| 注册
首页|期刊导航|中国科学院大学学报|一种融合Transformer和UNet的森林覆盖信息提取方法

一种融合Transformer和UNet的森林覆盖信息提取方法

廖凌岑 刘巍 刘士彬

中国科学院大学学报2025,Vol.42Issue(3):350-360,11.
中国科学院大学学报2025,Vol.42Issue(3):350-360,11.DOI:10.7523/j.ucas.2023.049

一种融合Transformer和UNet的森林覆盖信息提取方法

A method to extract forest cover information by fusing Transformer and UNet

廖凌岑 1刘巍 2刘士彬2

作者信息

  • 1. 中国科学院空天信息创新研究院,北京 100094||中国科学院大学资源与环境学院,北京 100049
  • 2. 中国科学院空天信息创新研究院,北京 100094
  • 折叠

摘要

Abstract

Forest cover information extraction is one of the essential tasks in forest remote sensing applications,which is of great significance for forest resource management,ecological environment protection,and climate change research.Traditional convolutional neural network-based methods can effectively extract local features,but struggle to capture long-range dependencies and global context information.To address this issue,we propose a method for forest cover information extraction that fuses Transformer and UNet,referred to as DiUNet.This approach embeds Transformer modules into the UNet network to enhance its perception of long-range dependencies and global context information.Meanwhile,considering the fragmentation,irregularity,and inconsistent scale of forest cover information,our method enhances the model's ability to capture spatial information by using relative position encoding to increase the positional information,enabling the model to capture features at different levels and scales.We constructed a forest cover information dataset based on Landsat 8 and CDL data layers and conducted in-depth experimental analyses on this dataset.In the comparative experiments,DiUNet achieved the best results in accuracy,recall,F1 score,intersection-over-union,and frequency-weighted intersection-over-union indices,which were 91.22%,92.66%,91.94%,85.08%,and 81.65%,respectively.The model also performed well in generalization experiments.The experimental results show that the DiUNet method outperforms existing methods in forest cover information extraction and has high robustness and generalization capabilities.

关键词

语义分割/UNet/Transformer/森林覆盖信息/森林遥感

Key words

semantic segmentation/UNet/Transformer/forest cover information/forest remote sensing

分类

计算机与自动化

引用本文复制引用

廖凌岑,刘巍,刘士彬..一种融合Transformer和UNet的森林覆盖信息提取方法[J].中国科学院大学学报,2025,42(3):350-360,11.

基金项目

中国科学院战略先导科技专项A类(XDA19010401)和国家重点研发计划政府间港澳台重点专项(2018YFE0100100)资助 (XDA19010401)

中国科学院大学学报

OA北大核心

2095-6134

访问量0
|
下载量0
段落导航相关论文