| 注册
首页|期刊导航|重庆理工大学学报|双路Transformer在轴承故障诊断中的应用

双路Transformer在轴承故障诊断中的应用

邰志艳 侯婷悦 刘铭 于子奇 冯子懿

重庆理工大学学报2025,Vol.39Issue(9):179-184,6.
重庆理工大学学报2025,Vol.39Issue(9):179-184,6.DOI:10.3969/j.issn.1674-8425(z).2025.05.022

双路Transformer在轴承故障诊断中的应用

Application of dual-path Transformer in bearing fault diagnosis

邰志艳 1侯婷悦 1刘铭 2于子奇 1冯子懿1

作者信息

  • 1. 长春工业大学 数学与统计学院,长春 130012
  • 2. 长春工业大学 数学与统计学院,长春 130012||吉林大学 符号计算与知识工程教育部重点实验室,长春 130012
  • 折叠

摘要

Abstract

As it is unable to make full use of the signal characteristics,traditional algorithm has certain limitations in the bearing fault diagnosis task.To address the issue,a Dual-Path Transformer method is proposed to diagnose and classify bearing faults.The self-attention mechanism of the Transformer ensures the deep extraction of global temporal correlation information from long sequential frequency data.The Dual-Path Transformer employs convolution kernels of different sizes and attention mechanisms with different characteristics on two paths to extract the high and low-frequency features of the signal.Thus,it effectively identifies high and low-frequency features that represent bearing faults from the multiple spectra of the signal sequence,increasing the richness of feature information.Additionally,a multi-scale feature fusion module is designed to fuse the high and low-frequency features containing global correlation information extracted by the Dual-Path Transformer,obtaining deep fault features to achieve efficient diagnosis of different fault types.Experimental validation on the bearing dataset of the Society for Machinery Failure Prevention Technology demonstrates the Dual-Path Transformer achieves an accuracy of 97.44%under certain convergence rates.It surpasses traditional diagnostic algorithms in both accuracy and robustness.

关键词

轴承故障诊断/双路 Transformer/多尺度特征融合/MFPT数据集/自注意力机制

Key words

bearing fault diagnosis/Dual-Path Transformer/multi-scale feature fusion/MFPT dataset/self-attention mechanism

分类

机械工程

引用本文复制引用

邰志艳,侯婷悦,刘铭,于子奇,冯子懿..双路Transformer在轴承故障诊断中的应用[J].重庆理工大学学报,2025,39(9):179-184,6.

基金项目

国家自然科学基金项目(61503150) (61503150)

吉林省发改委省级产业创新专项资金项目(2017C033-4) (2017C033-4)

重庆理工大学学报

OA北大核心

1674-8425

访问量0
|
下载量0
段落导航相关论文