| 注册
首页|期刊导航|重庆理工大学学报|稀疏贝叶斯学习在脑电抑郁症识别中的应用研究

稀疏贝叶斯学习在脑电抑郁症识别中的应用研究

沈如达 朱洁 苏吉普 赵焱 何万源 常洪丽

重庆理工大学学报2025,Vol.39Issue(9):73-81,9.
重庆理工大学学报2025,Vol.39Issue(9):73-81,9.DOI:10.3969/j.issn.1674-8425(z).2025.05.009

稀疏贝叶斯学习在脑电抑郁症识别中的应用研究

Research on the application of sparse bayesian learning in EEG-based depression recognition

沈如达 1朱洁 1苏吉普 1赵焱 1何万源 1常洪丽1

作者信息

  • 1. 东南大学 信息科学与工程学院,南京 211189
  • 折叠

摘要

Abstract

As mental health issues become increasingly prominent,the high incidence of depression,especially in the post-pandemic era,has garnered widespread attention.Traditional diagnosis of depression relies on the judgment of clinicians,which has certain limitations.Therefore,developing an objective and accurate automatic recognition method for depression is of paramount importance.This study aims to analyze Electroencephalography(EEG)signals to develop an automatic recognition model for depression,thereby enhancing the objectivity and accuracy of diagnoses.Based on the MODMA dataset specifically designed for the analysis of psychological disorders,including the resting-state EEG data from 24 subjects with depression and 29 subjects without,a sparse Bayesian learning(SBL)algorithm is employed to develop an end-to-end depression recognition model.By conducting an in-depth analysis of EEG signals,the differences in brain activity between subjects with depression and those without are explored.Experimental results demonstrate the proposed model achieves 100%in accuracy on the testset,significantly surpassing existing depression detection techniques.Parameter analysis further confirms the model's effectiveness and its value,providing a new perspective for the automated detection and diagnosis of depression.

关键词

抑郁症识别/脑电信号/客观评估/稀疏贝叶斯学习

Key words

depression recognition/EEG signals/objective assessment/SBL

分类

信息技术与安全科学

引用本文复制引用

沈如达,朱洁,苏吉普,赵焱,何万源,常洪丽..稀疏贝叶斯学习在脑电抑郁症识别中的应用研究[J].重庆理工大学学报,2025,39(9):73-81,9.

基金项目

国家自然科学基金项目(62206210) (62206210)

重庆理工大学学报

OA北大核心

1674-8425

访问量0
|
下载量0
段落导航相关论文