| 注册
首页|期刊导航|分析测试学报|紫外光谱结合机器学习算法的祛痘类化妆品中4种禁用抗感染类药物快速筛查

紫外光谱结合机器学习算法的祛痘类化妆品中4种禁用抗感染类药物快速筛查

向健华 芦丽 方方 石心红

分析测试学报2025,Vol.44Issue(6):1096-1106,11.
分析测试学报2025,Vol.44Issue(6):1096-1106,11.DOI:10.12452/j.fxcsxb.24122328

紫外光谱结合机器学习算法的祛痘类化妆品中4种禁用抗感染类药物快速筛查

Rapid Screening of 4 Banned Substances in Acne-clearing Cosmetics by UV Spectroscopy Combined with Machine Learning Algorithm

向健华 1芦丽 2方方 3石心红4

作者信息

  • 1. 江苏省药品监督检验研究院,江苏 南京 210019||中国药科大学 中药学院,江苏 南京 211198
  • 2. 江苏省药品监督检验研究院,江苏 南京 210019||国家药品监督管理局化学药品杂质谱重点实验室,江苏 南京 210019
  • 3. 江苏省药品监督检验研究院,江苏 南京 210019
  • 4. 中国药科大学 中药学院,江苏 南京 211198
  • 折叠

摘要

Abstract

A qualitative model for rapid screening of metronidazole,ketoconazole,chloramphenicol and norfloxacin in acne-clearing cosmetics was developed based on ultraviolet spectrum of cosmetics combined with machine learning algorithms.In this study,ultraviolet spectra of 167 batches of acne-clearing cosmetics were collected for model building.The two-dimensional correlation spectroscopy(2D-COS)technique was used for ultraviolet spectra feature band selection,and the effect of each model was compared under 22 spectral preprocessing methods,three machine learning algorithms,and three dataset division ratios.Five-classification qualitative models were established for positive and negative samples containing metronidazole,ketoconazole,chloramphenicol and norfloxacin,re-spectively.The results showed that the ultraviolet spectra of 190-360 nm were selected to be pro-cessed jointly by standard normal variables(SNV)and Savitzky-Golay convolutional smoothing(SG),and the ratio of training set to prediction set division of 7∶3 was chosen to build a qualitative classifi-cation model using the error back propagation(BP)neural network algorithm.The accuracy of the model training set and prediction set can reach 96.58%and 98.00%,respectively,with good predic-tion and generalisation ability.This method can effectively screen and identify the four banned anti-infective drugs in cosmetics quickly and accurately,which not only saves the detection cost and time and improves the detection efficiency,but also helps the on-site rapid inspection and provides a rap-id and intelligent solution for the detection of illegal addition of banned substances in cosmetics.

关键词

紫外光谱/化妆品/误差逆传播神经网络/随机森林/支持向量机/二维相关光谱

Key words

ultraviolet spectroscopy/cosmetics/error back propagation neural network/random forest/support vector machines/two-dimensional correlation spectroscopy

分类

化学化工

引用本文复制引用

向健华,芦丽,方方,石心红..紫外光谱结合机器学习算法的祛痘类化妆品中4种禁用抗感染类药物快速筛查[J].分析测试学报,2025,44(6):1096-1106,11.

基金项目

江苏省食品药品监督管理局药品监管科研计划项目(202314) (202314)

分析测试学报

OA北大核心

1004-4957

访问量0
|
下载量0
段落导航相关论文