| 注册
首页|期刊导航|干旱区研究|基于SBAS-InSAR技术及LSTM神经网络的席芨滩巨型滑坡形变监测及预测

基于SBAS-InSAR技术及LSTM神经网络的席芨滩巨型滑坡形变监测及预测

李帅飞 刘昌义 胡夏嵩 唐彬元 吴志杰 邓太国 邢光延 赵吉美 雷浩川

干旱区研究2025,Vol.42Issue(6):1126-1137,12.
干旱区研究2025,Vol.42Issue(6):1126-1137,12.DOI:10.13866/j.azr.2025.06.15

基于SBAS-InSAR技术及LSTM神经网络的席芨滩巨型滑坡形变监测及预测

Deformation monitoring and prediction of Xijitan giant landslide based on SBAS-InSAR technology and long short-term memory neural network

李帅飞 1刘昌义 1胡夏嵩 1唐彬元 2吴志杰 1邓太国 1邢光延 3赵吉美 3雷浩川1

作者信息

  • 1. 青海大学地质工程学院,青海 西宁 810016
  • 2. 青海省地质测绘地理信息院,青海 西宁 810001||青海省高原测绘地理信息新技术重点实验室,青海 西宁 810001
  • 3. 青海大学农牧学院,青海 西宁 810016
  • 折叠

摘要

Abstract

This study examines the surface deformation characteristics and deformation rate prediction of large-scale landslides in the upper regions of the Yellow River between the Longyang and Jishi Gorge riverbanks.The study area was the Xijitan giant landslide within the Guide region of the upper Yellow River.The Small Baseline Subset Interferometric Synthetic Aperture Rader(SBAS-InSAR)technology was employed to monitor the surface deformation of the Xijitan giant landslide and analyze,its deformation rates and variation characteristics for the period 2019-2022.The results show that the following.(1)The maximum surface deformation rate of the land-slide body was-96 mm·a-1,with a maximum cumulative deformation of 464.71 mm.Distinct deformation zones were observed along the front and rear edges of the landslide body,with surface deformation rates ranging across-96-16 mm·a-1.(2)The cumulative deformation of characteristic points on a landslide body,determined using SBAS-InSAR technology,exhibited a maximum cumulative deformation of-140.50 mm.(3)The long short-term memory(LSTM)neural network model was used to predict the cumulative deformation of these points,and the results were compared with those obtained using Support Vector Machine(SVM)and Back Propagation(BP)neural network models.The LSTM model demonstrated high prediction accuracy,with an absolute error within 5 mm and a goodness-of-fit(R2)greater than 0.8.This confirmed the effectiveness of the LSTM model in predict-ing the cumulative surface deformation of landslides.Thus,the findings of this study provide data support and practical guidance for the enhanced monitoring of giant landslide deformation in the upper Yellow River region and the early detection of potential landslides.

关键词

黄河上游/龙羊峡至积石峡流域/席芨滩巨型滑坡/LSTM神经网络/SBAS-InSAR/地表形变量监测/地表累计形变量预测

Key words

upper Yellow River/Longyang Gorge to Jishi Gorge Basin/Xijitan giant landslide/LSTM neural network/SBAS-InSAR/surface deformation monitoring/prediction of surface cumulative deformation

引用本文复制引用

李帅飞,刘昌义,胡夏嵩,唐彬元,吴志杰,邓太国,邢光延,赵吉美,雷浩川..基于SBAS-InSAR技术及LSTM神经网络的席芨滩巨型滑坡形变监测及预测[J].干旱区研究,2025,42(6):1126-1137,12.

基金项目

国家自然科学基金项目(42041006) (42041006)

第二次青藏高原综合科学考察研究项目(2019QZKK0905) (2019QZKK0905)

青海省自然科学基金项目(2020-ZJ-906) (2020-ZJ-906)

干旱区研究

OA北大核心

1001-4675

访问量0
|
下载量0
段落导航相关论文