| 注册
首页|期刊导航|分析测试学报|基于XRF的CARS-GAF-MobileNet铝合金牌号分类研究

基于XRF的CARS-GAF-MobileNet铝合金牌号分类研究

吕树彬 万优 李福生 杨婉琪

分析测试学报2025,Vol.44Issue(6):1161-1168,8.
分析测试学报2025,Vol.44Issue(6):1161-1168,8.DOI:10.12452/j.fxcsxb.241027487

基于XRF的CARS-GAF-MobileNet铝合金牌号分类研究

Research on CARS-GAF-MobileNet Aluminum Alloy Grades Classification Based on XRF

吕树彬 1万优 1李福生 1杨婉琪1

作者信息

  • 1. 电子科技大学 自动化工程学院,四川 成都 611731||电子科技大学 长三角研究院(湖州),浙江 湖州 313001
  • 折叠

摘要

Abstract

Aluminum alloys are widely used in industry due to their excellent characteristics,and accurate classification of aluminum alloys grades can further promote the development of manufactur-ing and other fields.In this paper,a new aluminum alloy X-ray fluorescence(XRF)spectral classifi-cation framework CARS-GAF-MobileNet(CGM)was proposed.First,an XRF spectrometer was used to obtain XRF spectral data of the aluminum alloy samples.Then,a multi-element calibration-based competitive adaptive reweighted sampling(CARS)was proposed to select variables for the da-ta.Next,the one-dimensional spectra were converted into two-dimensional spectral images using Gramian angular field(GAF),and the grayscale images were converted into RGB images by color mapping.Finally,the converted 2D spectral images were inputs to the Mobilenet-V3 model to classi-fy the aluminum alloy samples.The experimental results showed that the final classification accuracy of the proposed CGM framework could reach 94.3%,which could accurately identify aluminum alloy samples of different grades.The CGM is a promising framework for identifying aluminum alloy grades,and it has superior theoretical guidance and application value for the aluminum alloy classifi-cation problem.

关键词

X射线荧光/铝合金分类/格拉姆角场/竞争性自适应重加权采样/深度学习

Key words

X-ray fluorescence/aluminum alloy classification/Gramian angular field/competi-tive adaptive reweighted sampling/deep learning

分类

化学

引用本文复制引用

吕树彬,万优,李福生,杨婉琪..基于XRF的CARS-GAF-MobileNet铝合金牌号分类研究[J].分析测试学报,2025,44(6):1161-1168,8.

基金项目

国家自然科学基金资助项目(62075028) (62075028)

分析测试学报

OA北大核心

1004-4957

访问量0
|
下载量0
段落导航相关论文