| 注册
首页|期刊导航|干旱区研究|基于多特征融合的面向对象冰川边界提取

基于多特征融合的面向对象冰川边界提取

林洲艳 王霞迎 夏元平

干旱区研究2025,Vol.42Issue(6):1032-1042,11.
干旱区研究2025,Vol.42Issue(6):1032-1042,11.DOI:10.13866/j.azr.2025.06.07

基于多特征融合的面向对象冰川边界提取

Object-based glacier boundary extraction utilizing multi-feature fusion

林洲艳 1王霞迎 2夏元平2

作者信息

  • 1. 东华理工大学测绘与空间信息工程学院,江西 南昌 330013
  • 2. 东华理工大学测绘与空间信息工程学院,江西 南昌 330013||东华理工大学自然资源部环鄱阳湖区域矿山环境监测与治理重点实验室,江西 南昌 330013||东华理工大学江西省流域生态过程与信息重点实验室,江西 南昌 330013||东华理工大学南昌市景观过程与国土空间生态修复重点实验室,江西 南昌 330013
  • 折叠

摘要

Abstract

Pixel-based classification struggles with the accurate identification of glacier changes in areas with similar spectral characteristics,particularly in debris-covered areas where spectral features closely resemble the surrounding mountains and rocks,thereby resulting in low extraction accuracy.This study investigates the Yin-sugaiti and Yalong Glaciers using Google Earth Engine to integrate spectral indices,microwave texture features,and topographic data.An object-based(OB)machine learning algorithm is applied for automated glacier extrac-tion and compared to pixel-based(PB)classification methods.The results show the following.(1)The OB classi-fication approach,integrating multi-feature fusion,significantly improved the glacier extraction accuracy.The OB_RF classifier achieved an overall accuracy of 98.1%,a Kappa coefficient of 0.97,and an F1-score of 98.67%,outperforming the OB_CART and OB_GTB classifiers.When compared to PB_RF,the overall accuracy,Kappa coefficient,and F1-score increased by 1.7%,0.024,and 5.57%,respectively.(2)Between 2001-2022,the Yinsugaiti and Yalong Glaciers retreated at average annual rates of 0.08%and 0.13%,respectively.(3)Supragla-cial debris was primarily distributed below 5000 and 4800 m on the Yinsugaiti and Yalong Glacier,respectively.Over the same period,debris-covered areas on both glaciers expanded upward.

关键词

冰川边界提取/面向对象/基于像素/机器学习/多特征融合

Key words

glacier boundary extraction/object-based/pixel-based/machine learning/multi-feature fusion

引用本文复制引用

林洲艳,王霞迎,夏元平..基于多特征融合的面向对象冰川边界提取[J].干旱区研究,2025,42(6):1032-1042,11.

基金项目

国家自然科学基金项目(42174055,42374040) (42174055,42374040)

东华理工大学博士启动基金(DHBK2019187) (DHBK2019187)

干旱区研究

OA北大核心

1001-4675

访问量0
|
下载量0
段落导航相关论文