| 注册
首页|期刊导航|高压电器|基于改进YOLOv7的多尺度特征提取绝缘子缺陷检测算法

基于改进YOLOv7的多尺度特征提取绝缘子缺陷检测算法

孙虹 郭乂菡 雷经发 赵汝海 李永玲 张淼

高压电器2025,Vol.61Issue(6):102-112,11.
高压电器2025,Vol.61Issue(6):102-112,11.DOI:10.13296/j.1001-1609.hva.2025.06.012

基于改进YOLOv7的多尺度特征提取绝缘子缺陷检测算法

Insulator Defect Detection Algorithm for Multi-scale Feature Extraction Based on Improved YOLOv7

孙虹 1郭乂菡 1雷经发 2赵汝海 1李永玲 2张淼1

作者信息

  • 1. 安徽建筑大学机械与电气工程学院,合肥 230601||工程机械智能制造安徽省教育厅重点实验室,合肥 230601
  • 2. 安徽建筑大学机械与电气工程学院,合肥 230601||过程装备与控制工程四川省高校重点实验室,四川 自贡 643000
  • 折叠

摘要

Abstract

In view of such issues as small defect sizes in insulation images,abundant background interference factors and imbalanced difficulty and easy sample of insulator,a multi-scale fusion YOLOv7(MSF-YOLOv7)algorithm is proposed and applied to the defect detection of insulator of power transmission lines.Firstly,the multi-scale convolu-tion block attention module(MS-CBAM)is introduced to deeply aggregate feature maps with rich semantic informa-tion,enhancing the network's detection performance for target at different scales.Then,a newly developed global spa-tial pyramid pooling-fast(GSPPF)module is used in the backbone network to incorporate global background informa-tion,mitigating the influence of complex backgrounds.In view of imbalanced sample distribution,the Focaler-CIoU loss function is introduced to focus on different defect targets,speeding up the model's convergence rate.The experi-mental results indicate that the mAP50 of MSF-YOLOv7 model proposed in this paper is up to 88.1%,the precision and recall rates are up to 90.3%and 83.1%,which are 6.3%,7.9%and 6.3%higher than those of the YOLOv7 algo-rithm and,at the same time,the number of parameters and GFLOPs are reduced by 13.38%and 2.95%,respectively.

关键词

YOLOv7/绝缘子缺陷检测/多尺度特征提取/注意力机制/空间金字塔池化

Key words

YOLOv7/defect detection of insulator/muti-scale feature extraction/attention mechanism/spatial pyramid pooling

引用本文复制引用

孙虹,郭乂菡,雷经发,赵汝海,李永玲,张淼..基于改进YOLOv7的多尺度特征提取绝缘子缺陷检测算法[J].高压电器,2025,61(6):102-112,11.

基金项目

安徽重点研究与开发计划项目(1804a09020009) (1804a09020009)

安徽省高校自然科学研究重大项目与重点项目(J2021ZA0068,KJ2021A1060,2023AH040036) (J2021ZA0068,KJ2021A1060,2023AH040036)

安徽高校协同创新项目(GXXT-2022-019,GXXT2023-006,GXXT-2023-025) (GXXT-2022-019,GXXT2023-006,GXXT-2023-025)

过程装备与控制工程四川省高校重点实验室开放基金项目(GK202101,GK202308).Project Supported by Anhui Provincial Key Research and Development Plan Project,China(1804a09020009),Anhui University Natural Science Research Major Project and Key Project,China(J2021ZA0068,KJ2021A1060,2023AH040036),Anhui University Collaborative Innovation Project,China(GXXT-2022-019,GXXT2023-006,GXXT-2023-025),Process Equipment and Control Engineering Open Fund Project of Key Laboratory of Sichuan University,China(GK202101,GK202308). (GK202101,GK202308)

高压电器

OA北大核心

1001-1609

访问量0
|
下载量0
段落导航相关论文