| 注册
首页|期刊导航|航空学报|生成式模型赋能飞行器技术应用研究进展与展望

生成式模型赋能飞行器技术应用研究进展与展望

陈树生 李佳伟 贾苜梁 林家豪 金世轶 高正红 王岳青 马志强 李铮 段辰龙

航空学报2025,Vol.46Issue(10):40-93,54.
航空学报2025,Vol.46Issue(10):40-93,54.DOI:10.7527/S1000-6893.2024.31194

生成式模型赋能飞行器技术应用研究进展与展望

Empowering aircraft technology applications with generative models:Research progress and prospects

陈树生 1李佳伟 2贾苜梁 1林家豪 1金世轶 1高正红 1王岳青 3马志强 4李铮 5段辰龙6

作者信息

  • 1. 西北工业大学 航空学院,西安 710072||飞行器基础布局全国重点实验室,西安 710072
  • 2. 沈阳飞机设计研究所 扬州协同创新研究院有限公司,扬州 225000
  • 3. 中国空气动力研究与发展中心 计算空气动力研究所,绵阳 621000||空天飞行空气动力科学与技术全国重点实验室,绵阳 621000
  • 4. 西北工业大学 航天学院,西安 710072
  • 5. 中国运载火箭技术研究院 空间物理重点实验室,北京 100076
  • 6. 中国航空研究院,北京 100029
  • 折叠

摘要

Abstract

Generative models,which have achieved disruptive applications in the fields of natural language process-ing and computer vision,are becoming the cornerstone of digital intelligence technologies,serving as a crucial engine driving the future development of intelligent aircraft technology.This paper reviews the application progress of aircraft technologies empowered with generative models.Firstly,the development history of generative model architectures is summarized.Detailed introduction to the fundamental principles and improvement directions of variational autoencod-ers,generative adversarial networks,diffusion models,and Transformers is provided.Secondly,typical applications and transformative impacts of generative models in aircraft aerodynamics,trajectory prediction,and target detection are generalized,with a focus on the development trends in key technologies of aircraft aerodynamic design,including parameterized modeling,aerodynamic prediction model and inverse design.Intelligent implementation methods of real-time trajectory prediction,complete trajectory prediction,collaborative trajectory prediction and prediction error com-pensation are studied.From the perspective of improving existing target detection methods,the roles of generative models in multi-scale fusion,super-resolution enhancement and data enhancement are analyzed.Finally,we propose future research directions for aircraft technologies empowered with generative models from the perspectives of model method and application scenario expansion.Development suggestions are proposed for building interpretable general models and promoting vertical domain applications.

关键词

生成式人工智能/飞行器技术/空气动力设计/航迹预测/目标检测

Key words

generative artificial intelligence/aircraft technology/aerodynamic design/trajectory prediction/object detection

分类

航空航天

引用本文复制引用

陈树生,李佳伟,贾苜梁,林家豪,金世轶,高正红,王岳青,马志强,李铮,段辰龙..生成式模型赋能飞行器技术应用研究进展与展望[J].航空学报,2025,46(10):40-93,54.

基金项目

国家自然科学基金(92371109) (92371109)

民机科研项目 ()

西北工业大学"1-0"重大工程科学问题项目(G2024KY0613) National Natural Science Foundation of China(92371109) (G2024KY0613)

Civil Aircraft Research Project ()

"1-0"Major Engineering Science Problem Project of Northwestern Polytechnical University(G2024KY0613) (G2024KY0613)

航空学报

OA北大核心

1000-6893

访问量0
|
下载量0
段落导航相关论文