| 注册
首页|期刊导航|计算机应用研究|联邦学习中隐私保护聚合机制综述

联邦学习中隐私保护聚合机制综述

仇健 马海英 王占君 沈金宇

计算机应用研究2025,Vol.42Issue(6):1601-1610,10.
计算机应用研究2025,Vol.42Issue(6):1601-1610,10.DOI:10.19734/j.issn.1001-3695.2024.10.0451

联邦学习中隐私保护聚合机制综述

Survey of privacy-preserving aggregation mechanisms in federated learning

仇健 1马海英 1王占君 2沈金宇1

作者信息

  • 1. 南通大学人工智能与计算机学院,江苏南通 226019
  • 2. 南通大学数学与统计学院,江苏南通 226019
  • 折叠

摘要

Abstract

As a new distributed machine learning(DML)framework,FL can effectively protect the local data privacy of par-ticipants by aggregating the local model parameters uploaded by participants to train the global model.However,these local model parameters still have the risk of revealing the privacy of participants.As a critical step in FL,the privacy-preserving ag-gregation(PPAgg)mechanism has become a key technology for addressing privacy issues.This paper first introduced the con-cept of FL and its associated privacy and security threats.It then highlighted the core ideas and key procedures of PPAgg mechanisms by integrating existing privacy-preserving techniques in FL.This paper analyzed typical PPAgg mechanisms in de-tail,focusing on their primary advantages and limitations,as well as the specific application scenarios where they were sui-table.Finally,this paper summarized and analyzed current PPAgg mechanisms,explored emerging challenges and development directions for FL,and proposed potential solutions to address these issues.

关键词

联邦学习/隐私保护/聚合机制/区块链/安全多方计算

Key words

federated learning(FL)/privacy-preserving/aggregation mechanism/blockchain/secure multi-party computa-tion

分类

计算机与自动化

引用本文复制引用

仇健,马海英,王占君,沈金宇..联邦学习中隐私保护聚合机制综述[J].计算机应用研究,2025,42(6):1601-1610,10.

基金项目

南通市自然科学基金面上项目(JC2023069) (JC2023069)

南通大学信息科学技术学院研究生科研与实践创新计划资助项目(NTUSISTPR24_07) (NTUSISTPR24_07)

计算机应用研究

OA北大核心

1001-3695

访问量13
|
下载量0
段落导航相关论文