| 注册
首页|期刊导航|河南理工大学学报(自然科学版)|基于连续帧信息融合建模的小样本视频行为识别方法

基于连续帧信息融合建模的小样本视频行为识别方法

张冰冰 李海波 马源晨 张建新

河南理工大学学报(自然科学版)2025,Vol.44Issue(4):11-20,10.
河南理工大学学报(自然科学版)2025,Vol.44Issue(4):11-20,10.DOI:10.16186/j.cnki.1673-9787.2024070012

基于连续帧信息融合建模的小样本视频行为识别方法

Few-shot action recognition in video method based on continuous fame information fusion modeling

张冰冰 1李海波 1马源晨 1张建新1

作者信息

  • 1. 大连民族大学 计算机科学与工程学院,辽宁 大连 116650
  • 折叠

摘要

Abstract

Objectives To overcome the limitations of existing few-shot video action recognition methods in capturing global spatiotemporal information and modeling complex behaviors,a new network architecture was developed to significantly enhances the accuracy and robustness of few-shot learning in video action recognition tasks.Methods A network architecture was presented integrating a continuous frame information fusion module and a multi-dimensional attention modeling module.The continuous frame information fusion module was positioned at the input end of the network,primarily responsible for capturing and transforming low-level information into richer high-level semantic information.The multi-dimensional attention modeling module was set in the middle layer of the network.The entire network was designed based on a 2D convolu-tional model,effectively reducing computational complexity.Results Experiments on four mainstream action recognition datasetsshowed that,on the Something-Something V2 dataset,the accuracy rates for 1-shot and 5-shot tasks reached 50.8%and 68.5%,respectively;on the Kinetics-100 dataset,the 1-shot and 5-shot tasks achieved accuracy rates of 68.5%and 83.8%,respectively,showing significant improvement over ex-isting methods;on the UCF101 dataset,the method achieved an accuracy rate of 81.3%for the 1-shot task and 93.8%for the 5-shot task,both markedly superior to baseline methods.Additionally,on the HMDB51 dataset,the method demonstrated good generalization performance,with accuracy rates of 56.0%for the 1-shot task and 74.4%for the 5-shot task.Conclusions The continuous frame integration modeling network has shown significant advantages in improving the model's ability to process complex spatiotemporal infor-mationThe solutions presented in this study could introduce effective new methods to the field of few-shot action recognition,demonstrating their efficiency and practicality.

关键词

小样本学习/视频行为识别/时空建模/时空表征学习/连续帧信息

Key words

few-shot learning/video action recognition/spatiotemporal modeling/spatiotemporal representa-tion learning/continuous frame information

分类

计算机与自动化

引用本文复制引用

张冰冰,李海波,马源晨,张建新..基于连续帧信息融合建模的小样本视频行为识别方法[J].河南理工大学学报(自然科学版),2025,44(4):11-20,10.

基金项目

国家自然科学基金资助项目(61972062) (61972062)

吉林省科技发展计划项目(20230201111GX) (20230201111GX)

辽宁省应用基础研究计划项目(2023JH2/101300191,2023JH2/101300193) (2023JH2/101300191,2023JH2/101300193)

先进设计与智能计算省部共建教育部重点实验室开放课题(ADIC2023ZD003) (ADIC2023ZD003)

河南理工大学学报(自然科学版)

OA北大核心

1673-9787

访问量0
|
下载量0
段落导航相关论文