| 注册
首页|期刊导航|计算机与数字工程|基于局部邻域特征自适应的三维点云分类方法研究

基于局部邻域特征自适应的三维点云分类方法研究

宋振杰 祁云嵩

计算机与数字工程2025,Vol.53Issue(4):1038-1043,6.
计算机与数字工程2025,Vol.53Issue(4):1038-1043,6.DOI:10.3969/j.issn.1672-9722.2025.04.021

基于局部邻域特征自适应的三维点云分类方法研究

A 3D Point Cloud Classification Method Based on Adaptive Local Neighborhood Features

宋振杰 1祁云嵩1

作者信息

  • 1. 江苏科技大学计算机学院 镇江 212003
  • 折叠

摘要

Abstract

Due to the difference of point cloud density in different areas and the fact that the point cloud data may become sparse after sampling,the neighborhood relationship of the original target point cloud data is destroyed to some extent,thus affect-ing the full expression of the local structural features of the target and the ability to learn the features.To address this problem,a 3D point cloud recognition method based on adaptive optimization of local neighborhood features is proposed,which is suitable for flexi-bly updating the local geometric structure,enhancing the perceptual capability of the network,and better learning 3D point cloud features.First,the uniqueness of each individual point is increased by considering their respective optimal 3D neighborhoods.Sec-ondly,a neighborhood aggregation module based on the construction graph is used to extract local structural features for recognition in an end-to-end manner.Experimental results on the ModelNet40 dataset demonstrate the effectiveness of the method in typical 3D object shape classification.

关键词

三维点云/邻域自适应/动态图卷积/特征提取

Key words

3D point cloud/neighborhood adaption/dynamic graph convolution/feature extraction

分类

计算机与自动化

引用本文复制引用

宋振杰,祁云嵩..基于局部邻域特征自适应的三维点云分类方法研究[J].计算机与数字工程,2025,53(4):1038-1043,6.

基金项目

国家自然科学基金项目(编号:61471182)资助. (编号:61471182)

计算机与数字工程

1672-9722

访问量2
|
下载量0
段落导航相关论文