| 注册
首页|期刊导航|华中科技大学学报(自然科学版)|基于MSF和I-InceptionNet的变工况滚动轴承故障诊断

基于MSF和I-InceptionNet的变工况滚动轴承故障诊断

王进花 曹文宝 周德义 曹洁

华中科技大学学报(自然科学版)2025,Vol.53Issue(5):24-30,7.
华中科技大学学报(自然科学版)2025,Vol.53Issue(5):24-30,7.DOI:10.13245/j.hust.250033

基于MSF和I-InceptionNet的变工况滚动轴承故障诊断

MSF and I-InceptionNet based fault diagnosis of rolling bearings with variable operating conditions

王进花 1曹文宝 1周德义 2曹洁3

作者信息

  • 1. 兰州理工大学电气工程与信息工程学院,甘肃 兰州 730050
  • 2. 甘肃省制造信息工程研究中心,甘肃 兰州 730050
  • 3. 兰州理工大学电气工程与信息工程学院,甘肃 兰州 730050||甘肃省制造信息工程研究中心,甘肃 兰州 730050||兰州城市学院信息工程学院,甘肃 兰州 730070
  • 折叠

摘要

Abstract

A fault diagnosis method based on multisensor fusion(MSF)and improved InceptionNet(I-InceptionNet)was proposed to address the issue of low diagnostic accuracy and poor robustness in existing fault diagnosis methods under limited fault data and varying operating conditions.The method first resampled the acquired multi-source signals using a multi-phase anti-alias filter and converted them into red,green,blue(RGB)images as input to the model,preserving the multi-dimensional characteristics of the signals.Then,the attention feature fusion(AFF)technique was used to improve the connection layer of the InceptionNet network,fusing multi-sensor image features to enhance the overall classification performance.Finally,the fused images were classified for fault states.Experimental results show that the proposed method significantly outperforms single-source and other comparative methods in fault diagnosis under variable operating conditions.Particularly,in the cases of limited data,the diagnostic accuracy reaches 98.5%,demonstrating superior diagnostic precision and robustness.

关键词

滚动轴承/故障诊断/InceptionNet网络/特征级融合/多传感器

Key words

rolling bearings/fault diagnosis/InceptionNet networks/feature-level fusion/multi-sensor

分类

计算机与自动化

引用本文复制引用

王进花,曹文宝,周德义,曹洁..基于MSF和I-InceptionNet的变工况滚动轴承故障诊断[J].华中科技大学学报(自然科学版),2025,53(5):24-30,7.

基金项目

国家自然科学基金资助项目(62063020,61763028) (62063020,61763028)

甘肃省自然科学基金资助项目(20JR5RA463). (20JR5RA463)

华中科技大学学报(自然科学版)

OA北大核心

1671-4512

访问量0
|
下载量0
段落导航相关论文