首页|期刊导航|大气科学学报|基于机器学习的大气边界层高度预测方法研究

基于机器学习的大气边界层高度预测方法研究OA北大核心

Prediction of planetary boundary layer height using a machine learning ap-proach

中文摘要英文摘要

大气边界层高度受多种气象因素影响,正确掌握大气边界层高度连续变化和演变规律具有重要意义.为解决传统技术手段获取大气边界层高度存在的时空分辨率低、误差偏大等问题,本研究基于机器学习方法——XGBoost,利用2016年1月—2019年5月北京地区长期的地面气象观测、风廓线测风雷达和探空观测数据进行训练,确定算法模型估算大气边界层高度,预测了 2019年6月—2020年5月北京地区大气边界层高度.结果表明:在晴朗的白天,模型预测效果最好,与真实观测存在较高的一致性,相关系数达到0.86;夜间预测效果较差.地表温度、相对湿度、风速是对模型预测结果影响最显著的特征.预测的边界层高度呈现显著日变化,日出之后迅速发展,午后逐渐下降,夜间逐渐达到平稳;春夏季北京地区边界层高度日变化较为显著,可达1 km;秋冬季日变化幅度较小,约为700 m.总体上,XGBoost算法预测边界层高度的能力优于多元线性回归算法和支持向量回归算法.基于机器学习的边界层高度估计和预测方法避免了传统手段设置阈值带来的误差,为边界层高度连续观测和预测提供了新思路.

The planetary boundary layer(PBL),located in the lower troposphere near the earth's surface,is pro-foundly influenced by surface friction,thermal processes,and evaporation.As a crucial component of the atmos-pheric system,the PBL acts as a bridge between the free atmosphere and the Earth's surface and serves as the pri-mary space for human activity.Planetary boundary layer height(PBLH),a key structural characteristic,reflects physical processes such as turbulent mixing and convective development within the boundary layer.Accurately tracking its continuous changes and evolution is essential for advancing research in atmospheric science,environ-mental monitoring and pollution control. Traditional methods for PBLH determination,such as sounding observations,offer high accuracy but are lim-ited in spatial and temporal coverage,restricting their utility for multi-scale continuous observations.Remote sens-ing can provide continuous monitoring but is significantly affected by weather conditions and cannot fully capture PBLH dynamics.Numerical models,while useful,are subject to intrinsic model errors.A need remains to further investigate the relationship between near-surface atmospheric characteristics and PBLH.In this study,we apply a machine learning approach,XGBoost,to predict PBLH using long-term surface meteorological,wind radar,and sounding data from Beijing(January 2016 to May 2019)to train a model,which we subsequently employ to pre-dict PBLH from June 2019 to May 2020. Results indicate that the model performs optimally under clear-sky daytime conditions,achieving a high cor-relation with radiosonde-derived PBLH(correlation coefficient=0.86).Prediction accuracy is reduced at night.Surface temperature,relative humidity,and wind speed emerge as the most influential input features.The predicted PBLH displays a pronounced diurnal cycle,increasing rapidly after sunrise,gradually decreasing in the afternoon,and stabilizing at night.Seasonal analysis shows that daily PBLH variations are more pronounced in spring and summer,reaching up to 1 km,and are smaller in autumn and winter,around 700 m. Overall,the XGBoost algorithm outperforms multiple linear regression and support vector regression in PBLH predictions,offering an efficient,intuitive method to continuously estimate PBLH's diurnal variation.This approach provides new insights into the diurnal and seasonal patterns of the PBL,supporting multi-period analysis.However,model performance for nighttime PBLH is limited,as it does not fully capture the stabilized boundary layer's vertical stricture due to strong radiative cooling and the weakened interaction between the PBL and the surface.Future work will incorporate vertical observation data to refine the model structure and compare results with other detection methods to validate the applicability of the XGBoost algorithm.

白嘉怡;魏伟;张宏昇;车慧正

中国气象科学研究院灾害天气国家重点实验室,北京 100081||陕西省大气探测技术保障中心,陕西西安 710014中国气象科学研究院灾害天气国家重点实验室,北京 100081||中国气象局地球系统数值预报中心,北京 100081||中国气象局地球系统数值预报中心开放实验室,北京 100081北京大学物理学院大气与海洋科学系气候与海-气实验室,北京 100871中国气象科学研究院灾害天气国家重点实验室,北京 100081||中国气象科学研究院中国气象局大气化学重点开放实验室,北京 100081

XGBoost方法机器学习大气边界层高度日变化

XGBoost algorithmmachine learningplanetary boundary layer heightdiurnal cycle

《大气科学学报》 2025 (3)

404-416,13

国家重点研发计划项目(2023YFC3706300)国家自然科学基金项目(423751854217509291544216)中国气象科学研究院科技发展基金项目(2022KJ017)

10.13878/j.cnki.dqkxxb.20231010001

评论