| 注册
首页|期刊导航|大气科学学报|深度学习在ENSO预测中的应用研究

深度学习在ENSO预测中的应用研究

方巍 付海燕 罗京佳

大气科学学报2025,Vol.48Issue(3):429-437,9.
大气科学学报2025,Vol.48Issue(3):429-437,9.DOI:10.13878/j.cnki.dqkxxb.20240921001

深度学习在ENSO预测中的应用研究

Deep learning for ENSO forecasting:a review

方巍 1付海燕 2罗京佳3

作者信息

  • 1. 南京信息工程大学计算机学院/数字取证教育部工程研究中心,江苏南京 210044||中国气象科学研究院灾害天气科学与技术全国重点实验室,北京 100081||南京信息工程大学江苏省大气环境与装备技术协同创新中心,江苏南京 210044||南京气象科技创新研究院中国气象局交通气象重点开放实验室,江苏南京 210041
  • 2. 南京信息工程大学计算机学院/数字取证教育部工程研究中心,江苏南京 210044
  • 3. 南京信息工程大学气象灾害教育部重点实验室/气象灾害预报预警与评估协同创新中心/气候与应用前沿研究院,江苏南京 210044
  • 折叠

摘要

Abstract

The El Niño-Southern Oscillation(ENSO)is the most significant interannual climate variability phe-nomenon,exerting profound influences on global weather patterns and climate anomalies.The associated natural disasters pose severe threats to human lives and property.Traditional ENSO prediction methods primarily include dynamical and statistical approaches.Due to the long-term accumulation of climate data and a well-established theoretical foundation of ENSO dynamics,these methods have been extensively developed.Studies have shown that traditional methods perform well within the first 6 months of forecasting,achieving a correlation coefficient skill(Corr)of up to 0.85.However,prediction accuracy declines over time,with most models struggling to maintain a Corr above 0.5 beyond 12 months.This limitation is largely attributed to the inherent nonlinearity and uncertainty of ENSO events,which challenge the ability of traditional models to improve prediction accuracy and extend forecast lead times.Additionally,computational error accumulation,empirical limitations,and uncertain-ties in parameter optimization restrict the effectiveness of dynamical models for key long-term ENSO prediction.Likewise,due to the highly nonlinear nature of ENSO onset and evolution,statistical models struggle to capture the complex intrinsic features of ENSO from large datasets,thereby limiting prediction accuracy. In recent years,deep learning techniques have garnered increasing attention in ENSO forecasting due to their ability to efficiently process complex spatiotemporal data and adaptively learn feature representations.Researchers have explored deep learning approaches for ENSO prediction,achieving promising results.This review provides a comprehensive discussion of ENSO prediction,beginning with an overview of ENSO-related knowledge,inclu-ding key datasets for ENSO classification and forecasting.It then examines traditional ENSO prediction methods,covering both dynamical and statistical approaches.The review further explores the application of deep learning models in ENSO forecasting,including methods based on convolutional neural networks(CNNs),recurrent neu-ral networks(RNNs),graph neural networks(GNNs),and Transformer models.The advantages,limitations,and development trends of each type approach are summarized. Despite the promising advancements in deep learning for ENSO prediction,several key challenges remain:1)The"black-box"nature of deep learning models limits the physical interpretability of predictions.Although efforts have been made to integrate physical knowledge with deep learning,research on model interpretability re-mains incomplete.2)The limited time span of ENSO observational data and the rarity of extreme ENSO events result in constrained training samples.Additionally,discrepancies between simulated and observed data pose chal-lenges,necessitating further exploration of multivariate information to enhance model performance.3)The ongo-ing rapid changes in global climate may alter ENSO characteristics,making deep learning models trained on his-torical data susceptible to reduced reliability.Incorporating climate change impacts into deep learning models is essential for improving forecast robustness.

关键词

ENSO预测/人工智能/深度学习/气候变化/气象灾害

Key words

ENSO prediction/artificial intelligence/deep learning/climate change/meteorological hazards

引用本文复制引用

方巍,付海燕,罗京佳..深度学习在ENSO预测中的应用研究[J].大气科学学报,2025,48(3):429-437,9.

基金项目

国家自然科学基金项目(42475149) (42475149)

灾害天气国家重点实验室开放课题(2024LASW-B19) (2024LASW-B19)

中国气象局流域强降水重点开放实验室开放研究基金项目(2023BHR-Y14) (2023BHR-Y14)

江苏省研究生科研与实践创新计划项目(KYCX25_1660) (KYCX25_1660)

大气科学学报

OA北大核心

1674-7097

访问量0
|
下载量0
段落导航相关论文