首页|期刊导航|大气科学学报|基于改进残差网络的气温预报技术在湖南的应用

基于改进残差网络的气温预报技术在湖南的应用OA北大核心

Application of an enhanced residual network-based model for temperature forecasting in Hunan Province,China

中文摘要英文摘要

基于中国气象局陆面数据同化系统(China Meteorological Administration Land Data Assimilation System,CLDAS)格点实况资料与欧洲中期天气预报中心-综合预报系统(European Centre for Medium-Range Weather Forecasts-Integrated Forecast System,ECMWF-IFS)模式最优因子集,构建了 Res-STS(residual spatio-temporal stacking)网络气温预报订正模型,旨在提高湖南省气温预报的准确性.Res-STS模型在深度学习框架残差网络(residual networks,ResNets)的基础上进行了改进,采用"面-点"结构进行建模,有效保留了环境背景场特征和时序特征,包含ECMWF-IFS特征融合模块(EC feature fusion,ECFF)和降尺度模块(downscaling module,DM),前者利用卷积残差块提取特征,后者通过反卷积层实现分辨率降低,最终生成逐小时气温预报.在湖南省逐小时、日最高、日最低气温预报产品的误差分析中,Res-STS模型平均绝对误差(mean absolute error,MAE)分别为1.21、1.38、1.07 ℃,相较于ECMWF-IFS和国家气象中心指导预报表现出更低的误差,特别是在最高气温预报中表现尤为优异(误差比国家气象中心指导预报降低23.8%).在高海拔地区的误差分布对比中,Res-STS模型表现出更高的精度和稳定性,其误差分布更为集中,中位数最低.在寒潮和高温天气过程中,Res-STS模型的最低气温、最高气温、逐1 h气温预报分别高于其他客观产品和人工订正结果.

This study introduces a residual spatio-temporal stacking(Res-STS)model designed to improve tem-perature forecasting in Hunan Province,China-a region characterized by complex terrain,with mountainous areas to the east,west,and south,and the Dongting Lake Plain to the north.This diverse topography,influenced by elevation gradients,vegetation cover,cold air pooling,and lake effects,results in spatially heterogeneous and tem-poral dynamic temperature patterns. Although deep learning models such as ResNets have demonstrated success in precipitation forecasting and severe weather recognition,their application to temperature forecasting remains limited-particularly regarding the integration of multi-scale physical variables from numerical models.To address this gap,the Res-STS model in-tegrates both surface and upper-air variables from the European Centre for Medium-Range Weather Forecasts In-tegrated Forecasting System(ECMWF-IFS),along with observational data,thereby enhancing the model's ability to capture spatiotemporal dependencies. The Res-STS architecture adapts the ResNet with residual connections to mitigate gradient vanishing and ex-plosion,preserving shallow-layer features.Unlike conventional sequential temporal models,Res-STS employs a spatiotemporal stacking approach to jointly learn background environmental fields and temporal evolution patterns.Spatially,a"field-to-point"framework is adopted:a 250 km × 250 km region centered on each forecast grid point-corresponding approximately to meso-beta-scale systems-is used as input.This design balances computa-tional efficiency and the retention of large-scale atmospheric information,avoiding the limitations of point-to-point oversimplification and field-to-field data scarcity.Temporally,consecutive 3-hourly ECMWF-IFS forecast fields are stacked to predict hourly temperatures in sequential time windows(e.g.,forecasts at T0 and T1 are used to predict hours 1-3;T1 and T2 for hours 4-6,and so on),enabling the generation of continuous 24-hour fore-casts. Evaluation results show that the Res-STS model outperforms benchmark models across all tested metrics.Compared with ECMWF-IFS and guidance from the National Meteorological Centre,Res-STS achieves mean ab-solute errors(MAEs)of 1.21 ℃ for hourly forecasts,1.38℃ for daily maximum temperatures,and 1.07 ℃ for daily minimum temperatures-representing reductions of 23.8%and 15.2%in MAEs for maximum and minimum temperatures,respectively.In high-altitude areas above 800 meters,the model's median error(1.12℃)is 31%lower than that of ECMWF-IFS.During extreme events,such as cold waves and heatwaves,Res-STS also outperforms manual corrections and objective forecasts,achieving 2 ℃ accuracy rates of 85.81%for mini-mum temperatures and 97.88%for maximum temperatures. Nonetheless,the model's reliance on ECMWF-IFS input fields constrains its performance under systematic biases-such as errors in cloud cover estimation-which can increase MAEs by 0.8-2.3 ℃ during persistent synoptic anomalies.Additionally,the 0.05° resolution of the China Meteorological Administration Land Data As-similation System(CLDAS)dataset may smooth terrain transitions in narrow valleys,contributing to residual af-ternoon temperature discrepancies of up to 1.8 ℃.Current computational limitations restrict the model's opera-tional use to Hunan Province.Future research is needed to reduce reliance on numerical model inputs,incorporate higher-resolution terrain data,and optimize computational performance for broader deployment and improved forecast accuracy during extreme cooling events. This study advances the integration of deep learning with numerical weather prediction and offers a novel post-processing framework for temperature forecasting in regions with complex topography.

陈鹤;周莉;卢姝;兰明才;许霖

气象防灾减灾湖南重点实验室,湖南长沙 410118||湖南省气象台,湖南长沙 410118||中国气象局洞庭湖国家气候观象台,湖南岳阳 414000||中国气象局高影响天气(专项)重点开放实验室,湖南长沙 410118气象防灾减灾湖南重点实验室,湖南长沙 410118||湖南省气象台,湖南长沙 410118||中国气象局洞庭湖国家气候观象台,湖南岳阳 414000||中国气象局高影响天气(专项)重点开放实验室,湖南长沙 410118气象防灾减灾湖南重点实验室,湖南长沙 410118||湖南省气象台,湖南长沙 410118气象防灾减灾湖南重点实验室,湖南长沙 410118||湖南省气象台,湖南长沙 410118||中国气象局洞庭湖国家气候观象台,湖南岳阳 414000||中国气象局高影响天气(专项)重点开放实验室,湖南长沙 410118气象防灾减灾湖南重点实验室,湖南长沙 410118||湖南省气象台,湖南长沙 410118||中国气象局洞庭湖国家气候观象台,湖南岳阳 414000||中国气象局高影响天气(专项)重点开放实验室,湖南长沙 410118

深度学习Res-STS 模型气温预报预报评估

deep learningRes-STS modeltemperature forecastingforecast evaluation

《大气科学学报》 2025 (3)

499-514,16

国家重点研发计划项目(2023YFC3007804)气象能力提升联合研究专项(23NLTSZ005)珠江流域(华南区域)气象科研开放基金项目(ZJ-LY202423-HU03)

10.13878/j.cnki.dqkxxb.20241217001

评论