| 注册
首页|期刊导航|中国农业信息|基于改进的YOLOv5的蜜柚果树识别方法

基于改进的YOLOv5的蜜柚果树识别方法

张嘉豪 郭阳 刘杰 陈桂鹏

中国农业信息2025,Vol.37Issue(1):29-39,11.
中国农业信息2025,Vol.37Issue(1):29-39,11.DOI:10.12105/j.issn.1672-0423.20250103

基于改进的YOLOv5的蜜柚果树识别方法

Identification method of honey pomelo tree based on improved YOLOv5

张嘉豪 1郭阳 2刘杰 1陈桂鹏1

作者信息

  • 1. 江西省农业科学院农业经济与信息研究所,南昌 330200||华东交通大学电气与自动化工程学院,江西 南昌 330000
  • 2. 江西省农业科学院农业经济与信息研究所,南昌 330200
  • 折叠

摘要

Abstract

[Purpose]In order to promote intelligent spraying in Jinggang honey pomelo orchards and improve the efficiency of resource use,this study proposes a honey pomelo tree detection method based on an improved YOLOv5 algorithm.[Method]The M30T drone equipped with a CMOS image sensor was used to collect 504 high-resolution images in honey pomelo orchards,which were annotated using the LabelImg tool.An attention mechanism module was introduced to enhance the YOLOv5 target detection algorithm to improve the precision and speed of pomelo tree identification.[Result](1)On the test set,the improved YOLOv5 algorithm achieved a mean average precision(mAP)of 90.09%with a detection speed of 5.28 iterations per second(it/s).Compared to the SSD,YOLOv4,and the original YOLOv5 models,the precision improved by 8.33%,12.74%,and 1.72%,respectively.(2)The improved algorithm demonstrated strong robustness under varying illumination conditions and camera angles,exhibiting a comprehensive missed detection rate of only 3.54%.This represented reductions of 1.77%,16.81%,and 14.15%compared to the original YOLOv5,YOLOv4,and SSD models,respectively.(3)The efficient channel attention(ECA)module achieved an optimal balance between precision and speed.Compared to the baseline YOLOv5 model,it improved the mAP by 1.72%to 90.09%,outperforming other attention mechanisms in comprehensive evaluations.[Conclusion]The improved YOLOv5 algorithm demonstrates the ability to achieve precise honey pomelo tree detection and holds significant implications for developing intelligent spraying systems in Jinggang honey pomelo orchards.

关键词

YOLOv5/蜜柚果树识别/注意力模块

Key words

YOLOv5/honey pomelo tree identification/attention mechanism

引用本文复制引用

张嘉豪,郭阳,刘杰,陈桂鹏..基于改进的YOLOv5的蜜柚果树识别方法[J].中国农业信息,2025,37(1):29-39,11.

基金项目

江西省重大科技专项课题"果园智慧管控技术与智能装备集成研究"(20203ABC28W014-5) (20203ABC28W014-5)

井冈山农高区省级科技专项揭榜挂帅项目"智慧农业综合服务平台关键技术与装备研发与应用"(20222-051255) (20222-051255)

中国农业信息

1672-0423

访问量0
|
下载量0
段落导航相关论文