| 注册
首页|期刊导航|数据采集与处理|面向特种设备的大语言模型-知识图谱双向推理优化与幻觉抑制方法

面向特种设备的大语言模型-知识图谱双向推理优化与幻觉抑制方法

郑强 许振彬

数据采集与处理2025,Vol.40Issue(3):647-658,12.
数据采集与处理2025,Vol.40Issue(3):647-658,12.DOI:10.16337/j.1004-9037.2025.03.007

面向特种设备的大语言模型-知识图谱双向推理优化与幻觉抑制方法

LLM-KG Bidirectional Inference Optimization and Hallucination Suppression for Special Equipment

郑强 1许振彬2

作者信息

  • 1. 福建省特种设备检验研究院,福州 350008
  • 2. 华侨大学工学院,泉州 362021
  • 折叠

摘要

Abstract

Existing studies have constructed knowledge graph(KG)intelligent question-answering systems based on large language models(LLMs)in the field of special equipment.However,limited by the inincomplete entity relationships of KG,LLMs are still prone to hallucination in knowledge-intensive tasks.To suppress the generation of hallucinations,the fusion KG reasoning technology is proposed to enhance the knowledge representation by completing the entity relationship links.Furthermore,in view of the deficiencies of the existing KG reasoning methods in semantic association and topological structure parsing,a dynamic reasoning mechanism based on LLM is further introduced.By leveraging its deep semantic understanding ability,high-order logic rules are automatically generated to achieve the precise expansion of KG,thereby constructing a bidirectional collaborative optimization mechanism between LLM and KG.The results show that this method significantly outperforms the baseline model in terms of mean reciprocal rank(MRR),first hit rate(Hits@1),and top ten hit rate(Hits@10)on the Family,Kinship,and UMLS datasets.

关键词

知识图谱/大语言模型/幻觉抑制/双向协同优化/特种设备

Key words

knowledge graph(KG)/large language model(LLM)/hallucination suppression/bidirectional cooperative optimization/special equipment

分类

计算机与自动化

引用本文复制引用

郑强,许振彬..面向特种设备的大语言模型-知识图谱双向推理优化与幻觉抑制方法[J].数据采集与处理,2025,40(3):647-658,12.

基金项目

福建省科技项目引导性项目(2023H0012). (2023H0012)

数据采集与处理

OA北大核心

1004-9037

访问量0
|
下载量0
段落导航相关论文