| 注册
首页|期刊导航|数据采集与处理|基于迁移学习卷积记忆网络的多声音事件检测

基于迁移学习卷积记忆网络的多声音事件检测

陈鹏飞 夏秀渝

数据采集与处理2025,Vol.40Issue(3):730-740,11.
数据采集与处理2025,Vol.40Issue(3):730-740,11.DOI:10.16337/j.1004-9037.2025.03.013

基于迁移学习卷积记忆网络的多声音事件检测

Polyphonic Sound Event Detection Based on Transfer Learning Convolutional Retentive Network

陈鹏飞 1夏秀渝1

作者信息

  • 1. 四川大学电子信息学院,成都 610065
  • 折叠

摘要

Abstract

Aiming at the problems of limited strong annotation datasets and the sharp degradation of detection performance in real-world scenarios for polyphonic sound event detection tasks,a method for polyphonic sound event detection based on Transfer learning convolutional retentive network is proposed.Firstly,the method utilizes convolutional blocks with pre-trained weights to extract local features of audio data.Subsequently,the local features,along with orientation features,are input into the residual feature enhancement module for feature fusion and channel dimension reduction.The fused features are then fed into the retentive network with regularization methods to further learn the temporal information in the audio data.Experimental results demonstrate that,compared to the champion system model of the DCASE challenge,the method achieves a reduction in error rates by 0.277 and 0.106,and an increase in F1 scores by 22.6%and 6.6%on the development and evaluation sets of the DCASE 2016 Task3 dataset,respectively.On the development and evaluation sets of the DCASE 2017 Task3 dataset,the error rates are reduced by 0.22 and 0.123,and the F1 scores increase by 17.2%and 14.4%,respectively.

关键词

多声音事件检测/迁移学习/特征增强/记忆网络/正则化

Key words

polyphonic sound event detection/Transfer learning/feature enhancement/retentive network/regularization

分类

信息技术与安全科学

引用本文复制引用

陈鹏飞,夏秀渝..基于迁移学习卷积记忆网络的多声音事件检测[J].数据采集与处理,2025,40(3):730-740,11.

数据采集与处理

OA北大核心

1004-9037

访问量0
|
下载量0
段落导航相关论文