| 注册
首页|期刊导航|中国石油大学学报(自然科学版)|基于DC-HED网络和骨架提取的岩心图像边缘检测

基于DC-HED网络和骨架提取的岩心图像边缘检测

潘少伟 杨怡婷 尚娅敏 郭智 蔡文斌

中国石油大学学报(自然科学版)2025,Vol.49Issue(3):97-107,11.
中国石油大学学报(自然科学版)2025,Vol.49Issue(3):97-107,11.DOI:10.3969/j.issn.1673-5005.2025.03.010

基于DC-HED网络和骨架提取的岩心图像边缘检测

Edge detection of petrographic thin section images with DC-HED network and skeleton extraction

潘少伟 1杨怡婷 1尚娅敏 2郭智 3蔡文斌4

作者信息

  • 1. 西安石油大学计算机学院,陕西 西安 710065
  • 2. 新疆油田公司采油二厂第一采油作业区,新疆 克拉玛依 834008
  • 3. 中国石油勘探开发研究院,北京 100083
  • 4. 西安石油大学石油工程学院,陕西 西安 710065
  • 折叠

摘要

Abstract

The holistically-nested edge detection(HED)network is a widely used deep learning model for image edge detec-tion.However,it suffers from issues such as missing edges,redundancy,and blurring in the detection results.To address these shortcomings,this paper proposes DC-HED,a novel deep network model that integrates dilated convolution(DC)into the HED framework.First,the pooling layers in the last two layers of the original HED network are removed to better pre-serve edge information.Dilated convolution is the incorporated to expand the receptive field and enhance the restoration of edge details,leading to the re-design of the DC-HED network.Subsequently,the Zhang-Suen algorithm is applied to extract the skeleton from the image edge detection results.The DC-HED network and skeleton extraction were tested on edge detec-tion tasks for core cast thin section images(referred to as core images)from the S oil field in northern Shaanxi,China.The experimental results demonstrate that,compared to traditional methods such as the Canny and Sobel operators and the original HED network,the DC-HED network produces more complete and connected edges.Specifically,the DC-HED netword a-chieved a mean squared error of 0.1106,a structural similarity index of 0.7997,and a peak signal-to-noise ratio of 9.5611,all significantly improved over previous methods.Finally,applying skeleton extraction to the detected edges effectively re-moves clutter and produces a clear and continuous central contour of the image edges.

关键词

岩心铸体薄片图像/边缘检测/岩心数字化/HED网络/扩张卷积/骨架提取

Key words

petrographic thin section image/edge detection/core digitization/HED network/dilated convolution/skeleton extraction

分类

石油、天然气工程

引用本文复制引用

潘少伟,杨怡婷,尚娅敏,郭智,蔡文斌..基于DC-HED网络和骨架提取的岩心图像边缘检测[J].中国石油大学学报(自然科学版),2025,49(3):97-107,11.

基金项目

国家自然科学基金项目(52074225) (52074225)

中国石油大学学报(自然科学版)

OA北大核心

1673-5005

访问量2
|
下载量0
段落导航相关论文