| 注册
首页|期刊导航|数字图书馆论坛|基于机器阅读理解的科技文献三元组抽取模型研究

基于机器阅读理解的科技文献三元组抽取模型研究

王莉军 刘洢颖 郑明 李雪 王鑫月

数字图书馆论坛2025,Vol.21Issue(4):21-32,12.
数字图书馆论坛2025,Vol.21Issue(4):21-32,12.DOI:10.3772/j.issn.1673-2286.2025.04.003

基于机器阅读理解的科技文献三元组抽取模型研究

Triple Extraction Model of Scientific and Technical Literature Based on Machine Reading Comprehension

王莉军 1刘洢颖 1郑明 1李雪 2王鑫月2

作者信息

  • 1. 中国科学技术信息研究所,北京 100038||富媒体数字出版内容组织与知识服务重点实验室,北京 100038
  • 2. 北京科技大学计算机与通信工程学院,北京 100083
  • 折叠

摘要

Abstract

Scientific and technical literature is an important resource for promoting scientific research and technological progress.However,with the proliferation of literature,researchers are faced with the challenge of quickly obtaining key information from the massive amount of literature.In this paper,we propose an open information extraction model based on machine reading comprehension,namely MMOIE(Multi-Answer Machine-Reading-Comprehension Open Information Extraction),for efficiently extracting triples from scientific and technical literature.The model accurately calculates the critical weights of keywords by combining the SIFRank+model with the ELMo pre-trained language model,and then filters out fact triples containing at least one keyword.The experimental results show that,compared with the existing methods such as ZORE,SpanOIE,MGD-GNN,and TPOIE,the MMOIE model achieves a recall rate of 64.78%and an F1 score of 55.62%for key triple extraction,which significantly improves the efficiency and quality of key information extraction,effectively captures the entity relationships in the literature,and provides strong support for researchers to quickly obtain key information.

关键词

科技文献/开放信息/事实三元组/关键三元组/机器阅读理解

Key words

Scientific and Technical Literature/Open Information/Fact Triple/Key Triple/Machine Reading Comprehension

分类

计算机与自动化

引用本文复制引用

王莉军,刘洢颖,郑明,李雪,王鑫月..基于机器阅读理解的科技文献三元组抽取模型研究[J].数字图书馆论坛,2025,21(4):21-32,12.

基金项目

本研究得到中信所重点工作项目"面向战略决策的智能情报技术引擎研究及应用"(编号:ZD2025-08)资助. (编号:ZD2025-08)

数字图书馆论坛

1673-2286

访问量0
|
下载量0
段落导航相关论文