| 注册
首页|期刊导航|数据与计算发展前沿|基于推理攻击的生成模型隐私风险评估技术研究与应用综述

基于推理攻击的生成模型隐私风险评估技术研究与应用综述

张宁徽 龙春 万巍 李婧 杨帆 魏金侠 付豫豪

数据与计算发展前沿2025,Vol.7Issue(3):48-66,19.
数据与计算发展前沿2025,Vol.7Issue(3):48-66,19.DOI:10.11871/jfdc.issn.2096-742X.2025.03.005

基于推理攻击的生成模型隐私风险评估技术研究与应用综述

A Review of the Research and Application of Privacy Risk Assessment Techniques for Generative Models Based on Inference Attacks

张宁徽 1龙春 2万巍 2李婧 2杨帆 2魏金侠 2付豫豪2

作者信息

  • 1. 中国科学院计算机网络信息中心,北京 100083||中国科学院大学,北京 100190
  • 2. 中国科学院计算机网络信息中心,北京 100083
  • 折叠

摘要

Abstract

[Objective]To systematically sort out the research progress and application status of privacy risk assessment techniques for generative models based on inference attacks,[Literature Scope]this paper has surveyed more than 70 pieces of literature from mainstream conferences and jour-nals between 2015 and 2024.[Methods]From the technical dimension,the core classification basis is the assumptions of black-box and white-box conditions.Under the assumptions of black-box and white-box conditions,a detailed summary is made by further classifying the attack meth-ods for each type of generative model.From the application dimension,the focus is on the com-parison of privacy risk assessment framework solutions for synthetic data.[Results]The existing research on at-tack technologies is relatively complete.However,it has a high degree of coupling with the types of models and is limited by the accuracy rate in black-box scenarios,resulting in limitations in terms of universality and accuracy of the assessment framework for the privacy risks of synthetic data in practical applications.[Conclusion]Compared with current reviews in the same research direction,this paper for the first time summarizes the latest achievements of membership inference attacks on large language models and simultaneously conducts a comparative analysis of the current latest privacy risk assessment frameworks for synthetic data.Through a summary and analysis from both dimensions of technology and application,it provides valuable references and guidance for researchers in this direction.

关键词

生成模型/成员推理攻击/属性推理攻击/隐私风险评估

Key words

generative model/membership inference attack/attribute inference attack/privacy risk assessment

引用本文复制引用

张宁徽,龙春,万巍,李婧,杨帆,魏金侠,付豫豪..基于推理攻击的生成模型隐私风险评估技术研究与应用综述[J].数据与计算发展前沿,2025,7(3):48-66,19.

基金项目

国家重点研发计划(2023YFC3304704) (2023YFC3304704)

中国科学院网络安全和信息化专项(CAS-WX2022GC-04) (CAS-WX2022GC-04)

中国科学院青年创新促进会项目(2022170) (2022170)

数据与计算发展前沿

2096-742X

访问量2
|
下载量0
段落导航相关论文