| 注册
首页|期刊导航|河北地质大学学报|基于SMOTE算法的岩爆烈度等级预测模型研究

基于SMOTE算法的岩爆烈度等级预测模型研究

李璐佳 周爱红 袁颖 戎密仁

河北地质大学学报2025,Vol.48Issue(3):30-37,8.
河北地质大学学报2025,Vol.48Issue(3):30-37,8.DOI:10.13937/j.cnki.hbdzdxxb.2025.03.005

基于SMOTE算法的岩爆烈度等级预测模型研究

Research on Rockburst Intensity Grade Prediction Model Based on SMOTE Algorithm

李璐佳 1周爱红 2袁颖 2戎密仁2

作者信息

  • 1. 河北地质大学 城市地质与工程学院,河北 石家庄 050031
  • 2. 河北地质大学 城市地质与工程学院,河北 石家庄 050031||河北省地下人工环境智慧开发与管控技术创新中心,河北 石家庄 050031
  • 折叠

摘要

Abstract

In order to solve the problem of data imbalance in the rockburst database,resulting in low prediction accuracy of rockburst,five models were proposed based on the synthetic minority oversampling technique(SMOTE),including SMOTE-random forest,SMOTE-gradient boosting decision tree,SMOTE-support vector machine,SMOTE-BP neural network and SMOTE-convolutional neural network.In this paper,six indicators were selected and the rockburst intensity grade was divided into four grades,so as to establish a rockburst index system.Then,in view of the problem of data imbalance in the rockburst database,the SMOTE oversampling algorithm was used to expand the database.Finally,five commonly used machine learning models were introduced to predict the rockburst intensity level,and these five models were used to predict the original rockburst database and the rockburst database after SMOTE algorithm respectively,to verify the effectiveness of the pretreatment process.The results show that:1)Compared with the traditional model,the prediction accuracy of the model is improved by 10.000%~35.000%after the introduction of SMOTE algorithm;2)Compared with the other four models,the SMOTE-random forest model had the highest prediction accuracy.

关键词

岩爆/SMOTE过采样算法/随机森林/烈度等级预测

Key words

rockburst/SMOTE oversampling algorithm/random forest/intensity level prediction

分类

交通运输

引用本文复制引用

李璐佳,周爱红,袁颖,戎密仁..基于SMOTE算法的岩爆烈度等级预测模型研究[J].河北地质大学学报,2025,48(3):30-37,8.

基金项目

中央引导地方科技发展资金项目(246Z5405G) (246Z5405G)

河北地质大学学报

1007-6875

访问量0
|
下载量0
段落导航相关论文