| 注册
首页|期刊导航|水利学报|基于大语言模型的水利工程运行管理质量概念模型及知识图谱自动化构建

基于大语言模型的水利工程运行管理质量概念模型及知识图谱自动化构建

杨阳蕊 董方宁 王鹏斐 菅朋朋 李海昆

水利学报2025,Vol.56Issue(5):634-645,12.
水利学报2025,Vol.56Issue(5):634-645,12.DOI:10.13243/j.cnki.slxb.20250027

基于大语言模型的水利工程运行管理质量概念模型及知识图谱自动化构建

Automated construction of schema and knowledge graphs for the operation and management quality of hydraulic projects based on large language models

杨阳蕊 1董方宁 1王鹏斐 1菅朋朋 1李海昆1

作者信息

  • 1. 华北水利水电大学信息工程学院,河南郑州 450000
  • 折叠

摘要

Abstract

At present,the quality management related data of hydraulic projects are mostly stored in unstructured text with a low degree of digitization,making it difficult to meet the higher requirements for high-quality develop-ment.To overcome the shortcomings of the current knowledge graph and knowledge graph schema construction meth-ods,which rely heavily on manual labor and have poor efficiency.This paper proposes an Explore-Construct-Filter(ECF)framework based on large language models(LLMs)to achieve automated construction of conceptual models and knowledge graphs for the quality management of hydraulic project operation.The framework uses LLMs to first discover the entities and relationship types of the knowledge graph,and then designs and generates a conceptual model of the knowledge graph.Subsequently,under the guidance of the conceptual model,instances are extracted from the data source to construct a knowledge graph.Finally,design a filtering mechanism to remove triplet noise from conceptual models and knowledge graphs,ensuring accuracy.By setting the seed text set and the entire text set data,the various components of the ECF framework are evaluated and compared with the existing methods.The results show that the ECF framework performs well in the automatic construction of conceptual models and knowledge graphs,with an accuracy rate 23%higher than that of existing methods,thus optimizing the efficiency of knowledge graph construction,and providing technical and theoretical support for the standardized operation and steady prog-ress of water conservancy engineering.

关键词

大语言模型/概念模型/知识图谱/智能生成/水利工程运行与质量管理

Key words

Large Language Models/schema/knowledge graph/intelligent generation/operation and management quality of hydraulic projects

分类

计算机与自动化

引用本文复制引用

杨阳蕊,董方宁,王鹏斐,菅朋朋,李海昆..基于大语言模型的水利工程运行管理质量概念模型及知识图谱自动化构建[J].水利学报,2025,56(5):634-645,12.

基金项目

国家自然科学基金项目(72271091) (72271091)

河南省高等学校重点科研项目(25A520006) (25A520006)

华北水利水电大学硕士研究生创新能力提升工程项目(NCWUYC-202416098) (NCWUYC-202416098)

河南省科技厅科技攻关项目(252102210030) (252102210030)

水利学报

OA北大核心

0559-9350

访问量0
|
下载量0
段落导航相关论文