| 注册
首页|期刊导航|现代雷达|面向雷达目标识别的一种在线迁移学习框架

面向雷达目标识别的一种在线迁移学习框架

杨予昊 孙晶明 张强 晏媛 王众

现代雷达2025,Vol.47Issue(5):16-20,5.
现代雷达2025,Vol.47Issue(5):16-20,5.DOI:10.16592/j.cnki.1004-7859.20250102001

面向雷达目标识别的一种在线迁移学习框架

An Online Transfer Learning Framework for Radar Target Recognition

杨予昊 1孙晶明 1张强 1晏媛 1王众1

作者信息

  • 1. 南京电子技术研究所,江苏 南京 210039||雷达探测感知全国重点实验室,江苏 南京 210039
  • 折叠

摘要

Abstract

The contradiction between the requirements for reliable,efficient,and precise target recognition performance and the challenges in constructing comprehensive target databases demands that radar target recognition systems possess dynamic learning capabilities.These capabilities enable dynamic updates of data and models,as well as continuous improvement in recognition per-formance.The realization of functions such as sample self-labeling and model self-updating serves as prerequisite for achieving this objective.To address the practical need for performance self-enhancement in radar target recognition applications,an online trans-fer learning framework by integrating concepts from online learning and transfer learning is proposed in this study.Featuring a closed-loop structure,the framework combines online learning with transfer learning technologies to achieve self-iterative model op-timization through sample annotation and model fine-tuning,thereby automatically completing tasks such as sample labeling and model updating.Experimental results based on simulated data demonstrate that the proposed framework significantly enhances radar target recognition accuracy.With advantages including streamlined processes and rapid deployment,the framework exhibits strong engineering practicality.

关键词

雷达目标识别/样本自标注/模型自更新/在线学习/迁移学习

Key words

radar target recognition/sample self-labeling/model self-updating/online learning/transfer learning

分类

电子信息工程

引用本文复制引用

杨予昊,孙晶明,张强,晏媛,王众..面向雷达目标识别的一种在线迁移学习框架[J].现代雷达,2025,47(5):16-20,5.

基金项目

国家自然科学基金资助项目(U22B2059) (U22B2059)

现代雷达

OA北大核心

1004-7859

访问量0
|
下载量0
段落导航相关论文