| 注册
首页|期刊导航|液晶与显示|基于Mamba-2的视频快照压缩成像重构方法

基于Mamba-2的视频快照压缩成像重构方法

石敦攀 徐伟 朴永杰 方应红 籍浩林 李鹏飞

液晶与显示2025,Vol.40Issue(6):881-894,14.
液晶与显示2025,Vol.40Issue(6):881-894,14.DOI:10.37188/CJLCD.2024-0356

基于Mamba-2的视频快照压缩成像重构方法

Reconstruction method of video snapshot compressive imaging based on Mamba-2

石敦攀 1徐伟 2朴永杰 2方应红 2籍浩林 2李鹏飞1

作者信息

  • 1. 中国科学院 长春光学精密机械与物理研究所,吉林 长春 130033||中国科学院大学,北京 100049||中国科学院 天基动态快速光学成像技术重点实验室,吉林 长春 130033||吉林省航天先进光学成像技术重点实验室,吉林 长春 130033
  • 2. 中国科学院 长春光学精密机械与物理研究所,吉林 长春 130033||中国科学院 天基动态快速光学成像技术重点实验室,吉林 长春 130033||吉林省航天先进光学成像技术重点实验室,吉林 长春 130033
  • 折叠

摘要

Abstract

Video snapshot compressive imaging(SCI)is a novel imaging technique.It captures three-dimensional video data using a two-dimensional detector within a single exposure time and then reconstructs the original video data with appropriate algorithms.Although many current algorithms have outstanding performance in the reconstruction tasks of video SCI,the improvement of their reconstruction quality often comes at the cost of sacrificing the reconstruction speed,which significantly reduces the real-time performance of the algorithms.To balance reconstruction quality and speed,this paper proposes an end-to-end deep video SCI reconstruction method based on Mamba-2,namely M2BA-SCI.The M2BA-SCI network consists of a preprocessing module,a token generation block,Mamba attention blocks,and a video reconstruction block.Among them,the Mamba attention blocks are mainly composed of Mamba-2 linear attention blocks and feed-forward neural networks.A large number of experiments on simulated and real video datasets show that M2BA-SCI achieves a more balanced effect compared with previous algorithms.It maintains a relatively fast reconstruction speed while improving the reconstruction quality.In the benchmark grayscale video dataset,the average PSNR is 34.85,the average SSIM is 0.966,and the running time is 0.23 s.In the benchmark color video dataset,the average PSNR is 36.21,the average SSIM is 0.963,and the running time is 1.03 s.M2BA-SCI brings new ideas to video SCI reconstruction and provides a reference for designing algorithms with higher reconstruction quality based on the Mamba model.

关键词

视频快照压缩成像/压缩感知/Mamba-2/深度学习

Key words

video snapshot compressive imaging/compressive sensing/Mamba-2/deep learning

分类

计算机与自动化

引用本文复制引用

石敦攀,徐伟,朴永杰,方应红,籍浩林,李鹏飞..基于Mamba-2的视频快照压缩成像重构方法[J].液晶与显示,2025,40(6):881-894,14.

基金项目

国家重点研发计划(No.2022YFB3705702)Supported by National Key Research and Development Program of China(No.2022YFB3705702) (No.2022YFB3705702)

液晶与显示

OA北大核心

1007-2780

访问量2
|
下载量0
段落导航相关论文