| 注册
首页|期刊导航|燕山大学学报|SFF-YOLO:空频域融合的低照度目标检测网络

SFF-YOLO:空频域融合的低照度目标检测网络

李扬 陈伟 朱万山 李现国 侯景忠 刘明亮

燕山大学学报2025,Vol.49Issue(3):247-256,264,11.
燕山大学学报2025,Vol.49Issue(3):247-256,264,11.DOI:10.3969/j.issn.1007-791X.2025.03.006

SFF-YOLO:空频域融合的低照度目标检测网络

SFF-YOLO:a low-light object detection network with spatial-frequency domain fusion

李扬 1陈伟 2朱万山 2李现国 3侯景忠 2刘明亮4

作者信息

  • 1. 天津中德应用技术大学 软件与通信学院,天津 300350||天津工业大学 电子与信息工程学院,天津 300387||天津市光电检测技术与系统重点实验室,天津 300387
  • 2. 天津中德应用技术大学 软件与通信学院,天津 300350
  • 3. 天津工业大学 电子与信息工程学院,天津 300387||天津市光电检测技术与系统重点实验室,天津 300387||天津工业大学沧州研究院,河北 沧州 061000
  • 4. 芯宇宙(天津)科技有限公司,天津 300453
  • 折叠

摘要

Abstract

To address the issues of missed detections and low accuracy in traditional object detection networks under low-light conditions,a low-light object detection network called SFF-YOLO is proposed.It's based on SFFNet and YOLOv11.First,an image enhancement network called SFFNet is introduced.It employs spatial-frequency domain fusion,where low-light images are combined with illumination guidance maps and input into a coding module for feature extraction.Then,a dual-domain fusion network,DDFNet,is designed.Image brightness is enhanced through a spatial domain processing module(SPB),and local details are repaired using a frequency domain processing module(FPB).The fused spatial-frequency domain features are concatenated with a minimum channel constraint map and fed into a decoding module for image denosing.Finally,a joint loss function is designed.End-to-end joint training of SFF-YOLO is conducted through it,which improves the model's generalization ability and object detection performance.Experiments are conducted on the LOL-v2 and ExDark datasets.The experimental results show that PSNR values of 23.11 and 25.08 as well as SSIM values of 0.851 and 0.936 are achieved by SFFNet on the LOL-v2-Real and LOL-v2-Synthetic datasets respectively,which demonstrates superior enhancement effects compared to competing networks.An accuracy of 80.4%is reached by SFF-YOLO on the ExDark dataset,which is an improvement of 3.1%over YOLOv11,with a detection speed of 91.82 frames per second,achieving high-precision real-time detection.

关键词

低照度图像/目标检测/YOLOv11/空频域融合/联合训练

Key words

low-light image/object detection/YOLOv11/spatial-frequency domain fusion/joint training

分类

信息技术与安全科学

引用本文复制引用

李扬,陈伟,朱万山,李现国,侯景忠,刘明亮..SFF-YOLO:空频域融合的低照度目标检测网络[J].燕山大学学报,2025,49(3):247-256,264,11.

基金项目

天津市教委科研计划项目(2024KJ120) (2024KJ120)

燕山大学学报

OA北大核心

1007-791X

访问量0
|
下载量0
段落导航相关论文