| 注册
首页|期刊导航|智能城市|基于GIS与Python的交通流量大数据挖掘研究

基于GIS与Python的交通流量大数据挖掘研究

孟莉华 王世广

智能城市2025,Vol.11Issue(5):20-24,5.
智能城市2025,Vol.11Issue(5):20-24,5.DOI:10.19301/j.cnki.zncs.2025.05.006

基于GIS与Python的交通流量大数据挖掘研究

Research on big data mining of traffic flow based on GIS and Python

孟莉华 1王世广2

作者信息

  • 1. 郑州城市职业学院电子信息工程学院,河南 郑州 452370
  • 2. 合肥工业大学汽车与交通工程学院,安徽 合肥 230009
  • 折叠

摘要

Abstract

The time-varying characteristics of urban road traffic volume is an important indicator to characterize urban traffic conditions.The study proposes a detector data processing and analysis method based on GIS and Python to study the time-varying correlation of multi-scale traffic flow.First,the vector road network is acquired based on GIS,the bayonet detector is matched to the vector road network,and the detector data preprocessing and quality evaluation are performed.Then,according to the meaning of each field in the data,a Python-based bayonet data processing process is designed,and the time-sharing traffic is obtained by statistics.Finally,based on the data of the bayonet detector in Haikou,the time-varying correlation and migration of traffic in multiple cities are analyzed.Studies have shown that there is a relatively stable linear relationship between the peak hourly traffic volume,hourly volume,and daily traffic volume in Haikou City.And between 8:00-19:00 on the same date,the linear fitting parameter values of hourly traffic volume and peak hourly volume are similar.Migration experiments in multiple cities have verified the applicability of the empirical model of Haikou data.The data fitting error between 7:00-18:00 is generally less than 20%.

关键词

交通流量/时变特征/地理信息系统/Python/数据挖掘

Key words

traffic flow/time-varying characteristics/geographic information system/Python/data mining

分类

交通运输

引用本文复制引用

孟莉华,王世广..基于GIS与Python的交通流量大数据挖掘研究[J].智能城市,2025,11(5):20-24,5.

基金项目

安徽省哲学社会科学规划项目(AHSKQ2022D075) (AHSKQ2022D075)

智能城市

2096-1936

访问量0
|
下载量0
段落导航相关论文