| 注册
首页|期刊导航|制冷技术|基于卷积神经网络-微调的多联机故障诊断迁移研究

基于卷积神经网络-微调的多联机故障诊断迁移研究

蒋敏辉 陈焕新 苟伟

制冷技术2025,Vol.45Issue(2):22-29,49,9.
制冷技术2025,Vol.45Issue(2):22-29,49,9.DOI:10.3969/j.issn.2095-4468.2025.02.104

基于卷积神经网络-微调的多联机故障诊断迁移研究

Research on Fault Diagnosis Migration for Variable Refrigerant Flow System Based on Convolutional Neural Network with Fine-Tuning Algorithm

蒋敏辉 1陈焕新 1苟伟1

作者信息

  • 1. 华中科技大学能源与动力工程学院,湖北 武汉 430074
  • 折叠

摘要

Abstract

A fault diagnosis migration method based on CNN-FT(convolutional neural network with fine-tuning)is proposed,which leverages the informative prior knowledge from the source-domain variable refrigerant flow system to establish a diagnostic model for the target variable refrigerant flow system.Firstly,the source-domain is pre-trained,and the optimal CNN model is found by parameter optimization.Then the pre-training model is migrated to the target domain,and only a small amount of target data is used to train the top layer of CNN,with an accuracy of 86.71%.The previous network layer is thawed in turn for fine-tuning,and the accuracy rate is improved to 95.83%,which is significantly better than the target domain specific training(81.02%)and the source domain model direct migration(33.45%).

关键词

多联机系统/故障诊断/卷积神经网络/迁移学习/微调

Key words

Variable refrigerant flow system/Fault diagnosis/Convolutional neural network/Transfer learning/Fine-tuning

分类

土木建筑

引用本文复制引用

蒋敏辉,陈焕新,苟伟..基于卷积神经网络-微调的多联机故障诊断迁移研究[J].制冷技术,2025,45(2):22-29,49,9.

基金项目

国家自然科学基金(No.51876070). (No.51876070)

制冷技术

2095-4468

访问量0
|
下载量0
段落导航相关论文