| 注册
首页|期刊导航|发电技术|基于数据驱动的循环流化床机组深度调峰NOx预测

基于数据驱动的循环流化床机组深度调峰NOx预测

张鹏新 高明明 解沛然 于浩洋 张洪福 黄中

发电技术2025,Vol.46Issue(3):627-636,10.
发电技术2025,Vol.46Issue(3):627-636,10.DOI:10.12096/j.2096-4528.pgt.23135

基于数据驱动的循环流化床机组深度调峰NOx预测

NOx Prediction for Deep Peaking Regulation of Circulating Fluidized Bed Units Based on Data-Driven

张鹏新 1高明明 1解沛然 2于浩洋 1张洪福 3黄中4

作者信息

  • 1. 新能源电力系统国家重点实验室(华北电力大学),北京市 昌平区 102206
  • 2. 天津市普迅电力信息技术有限公司,天津市 东丽区 300308
  • 3. 国家能源集团新能源技术研究院有限公司,北京市 昌平区 102209
  • 4. 清华大学能源与动力工程系,北京市 海淀区 100084
  • 折叠

摘要

Abstract

[Objectives]Under the deep peaking regulation operation of circulating fluidized bed(CFB)unit,NOx emission will fluctuate significantly,which will have a serious impact on the stability and economy of the denitrification control system.Therefore,a data-driven NOx prediction model based on the deep peaking regulation of CFB unit is proposed.[Methods]The generation mechanism and influencing factors of NOx are analyzed in depth.Combined with the field operation data of a 300 MW CFB unit,the whale optimization algorithm(WOA)is used to optimize the parameters of the long short-term memory(LSTM)neural network,and the WOA-LSTM neural network model is established.[Results]The model realizes the online prediction of NOx emission mass concentration of CFB unit under deep peaking regulation.Compared with other neural network models,the proposed model has better prediction results.The mean absolute error of the model is 2.49 mg/m3,the mean absolute percentage error reaches 6.8%,and the model correlation coefficient reaches 0.99.[Conclusions]The model can accurately reflect the NOx emission trend under the wide range of variable load operation of the unit.The results of the study are a good guide for the operation of the automatic control system of denitrification in the field.

关键词

火电机组/循环流化床(CFB)/NOx排放/深度调峰/人工智能(AI)/鲸鱼优化算法(WOA)/长短期记忆(LSTM)神经网络

Key words

coal-fired power unit/circulating fluidized bed(CFB)/NOx emission/deep peaking regulation/artificial intelligence(AI)/whale optimization algorithm(WOA)/long short-term memory(LSTM)neural network

分类

能源与动力

引用本文复制引用

张鹏新,高明明,解沛然,于浩洋,张洪福,黄中..基于数据驱动的循环流化床机组深度调峰NOx预测[J].发电技术,2025,46(3):627-636,10.

基金项目

国家重点研发计划项目(2022YFB4100301).Project Supported by National Key Research and Development Program(2022YFB4100301). (2022YFB4100301)

发电技术

2096-4528

访问量0
|
下载量0
段落导航相关论文