| 注册
首页|期刊导航|测控技术|基于改进YOLOv5s的轻量化钢材表面缺陷检测模型

基于改进YOLOv5s的轻量化钢材表面缺陷检测模型

王同康 高天 乔文涛 香超 张隆

测控技术2025,Vol.44Issue(6):25-31,7.
测控技术2025,Vol.44Issue(6):25-31,7.DOI:10.19708/j.ckjs.2025.03.216

基于改进YOLOv5s的轻量化钢材表面缺陷检测模型

Lightweight Model for Steel Surface Defect Detection Based on Improved YOLOv5s

王同康 1高天 1乔文涛 2香超 1张隆3

作者信息

  • 1. 石家庄铁道大学土木工程学院,河北石家庄 050043
  • 2. 石家庄铁道大学土木工程学院,河北石家庄 050043||石家庄铁道大学道路与铁道工程安全保障省部共建教育部重点实验室,河北石家庄 050043
  • 3. 石家庄铁道大学土木工程学院,河北石家庄 050043||河北工程技术学院土木与建筑学院,河北石家庄 050091
  • 折叠

摘要

Abstract

A lightweight model based on improved YOLOv5s is proposed to address the problems of complex structures,large parameter quantity,poor real-time performance,and low detection accuracy in the current steel surface defect detection models.Firstly,the backbone network of YOLOv5 is replaced with MobileNetV3 to achieve model lightweight and improve detection speed.Secondly,the online convolutional re-parameteriza-tion(OREPA)technology is introducted to further reduce training costs.The K-means++algorithm is applied to improve the accuracy and convergence rate of prior box clustering.Finally,the CIoU(Complete Intersection over Union)loss function is replaced with EIoU(Extended Intersection over Union),which accelerates conver-gence and improves regression accuracy.Experimental results show that the proposed model increases mean av-erage precision by 2.8%,reduces the parameter count by 84.0%,decreases the model size by 81.4%,and improves detection speed by 60.8%.This model effectively balances lightweight design and detection accura-cy,is easy to deploy,which is suitable for real-time defect detection in steel production.

关键词

钢材表面缺陷检测/YOLOv5s/轻量化模型/MobileNetV3

Key words

steel surface defect detection/YOLOv5s/lightweight model/MobileNetV3

分类

计算机与自动化

引用本文复制引用

王同康,高天,乔文涛,香超,张隆..基于改进YOLOv5s的轻量化钢材表面缺陷检测模型[J].测控技术,2025,44(6):25-31,7.

基金项目

河北省杰出青年科学基金项目(E2022210084) (E2022210084)

测控技术

1000-8829

访问量0
|
下载量0
段落导航相关论文