| 注册
首页|期刊导航|中外公路|基于ANN的路基土回弹模量湿度调整系数和干湿循环折减系数预测

基于ANN的路基土回弹模量湿度调整系数和干湿循环折减系数预测

王绪丰 付伟 彭俊辉 胡健坤 张军辉 李之光

中外公路2025,Vol.45Issue(3):9-17,9.
中外公路2025,Vol.45Issue(3):9-17,9.DOI:10.14048/j.issn.1671-2579.2025.03.002

基于ANN的路基土回弹模量湿度调整系数和干湿循环折减系数预测

Prediction for Humidity Adjustment Factor and Dry-Wet Cycle Reduction Factor of Resilient Modulus of Subgrade Soil Based on ANN

王绪丰 1付伟 2彭俊辉 3胡健坤 4张军辉 3李之光3

作者信息

  • 1. 长沙理工大学 交通学院,湖南 长沙 410114||山东省交通科学研究院,山东 济南 250102
  • 2. 中交第二公路勘察设计研究院有限公司,湖北 武汉 430056
  • 3. 长沙理工大学 交通学院,湖南 长沙 410114
  • 4. 葛洲坝武汉道路材料有限公司,湖北 武汉 430200
  • 折叠

摘要

Abstract

Existing methods for determining the humidity adjustment factor and dry-wet cycle reduction factor of the resilient modulus of subgrade soil are mostly based on laboratory tests that consume a large amount of manpower and time,and the prediction accuracy is limited due to the constraints of specification value ranges.In order to achieve fast and accurate prediction of these two factors,the effects of stress state,moisture content,and the number of dry-wet cycles on the resilient modulus of subgrade soil were investigated through laboratory dynamic triaxial tests.Based on existing literature,physical parameters,state parameters,and stress parameters of subgrade soil were selected,and an artificial neural network prediction model optimized by a genetic algorithm was developed to enable rapid prediction of the humidity adjustment factor and dry-wet cycle reduction factor of subgrade soil.The results show that moisture content and dry-wet cycles have a significant influence on the resilient modulus of subgrade soil,while the humidity adjustment factor and dry-wet cycle reduction factor show stress dependence.The intelligent prediction model demonstrates high prediction accuracy for both the humidity adjustment factor and the dry-wet cycle reduction factor.

关键词

路基工程/回弹模量/湿度调整系数/干湿循环折减系数/人工神经网络/智能预测/遗传算法优化

Key words

subgrade engineering/resilient modulus/humidity adjustment factor/dry-wet cycle reduction factor/artificial neural network/intelligent prediction/genetic algorithm optimization

分类

交通工程

引用本文复制引用

王绪丰,付伟,彭俊辉,胡健坤,张军辉,李之光..基于ANN的路基土回弹模量湿度调整系数和干湿循环折减系数预测[J].中外公路,2025,45(3):9-17,9.

基金项目

国家重点研发计划项目(编号:2021YFB2600900) (编号:2021YFB2600900)

国家自然科学基金资助项目(编号:52208419) (编号:52208419)

湖南省教育厅科学研究项目(编号:21C0187) (编号:21C0187)

长沙理工大学研究生科研创新项目(编号:CX2021SS06) (编号:CX2021SS06)

长沙理工大学公路养护技术国家工程研究中心开放基金资助项目(编号:kfj210101) (编号:kfj210101)

长沙理工大学大学生创新创业训练计划项目(编号:2022006) (编号:2022006)

中外公路

1671-2579

访问量1
|
下载量0
段落导航相关论文