首页|期刊导航|河北水利电力学院学报|AI用于医疗处方多标签分类方法研究

AI用于医疗处方多标签分类方法研究OA

Research on Multi-label Classification Method of Medical Prescription by Using AI

中文摘要英文摘要

电子病历(Electronic Medical Records,EMRs)汇集了患者的医疗历史和健康状况数据.利用电子病历对脊髓损伤(Spi-nal Cord Injury,SCI)患者进行辅助诊断具有重要意义.因此,文中提出了一种基于电子病历的 SCI患者康复处方决策模型.首先,构建了一个包含 1 443 名截瘫类 SCI患者的 EMRs数据集,并相应地完成了数据预处理;其次,针对 EMRs不平衡的问题,提出了基于 MLSMOTE(Multi-label Synthetic Minority Over-sampling Technique)的多标签分类框架;最后,使用 7 个多标签分类模型来预测患者的物理治疗(Physical Therapy,PT)处方.所提出的 MLSMOTE多标签分类框架可以充分解决类别不平衡的问题.实验结果显示,与其他 6 个模型相比,RAkEL模型在许多指标上都有显著提高.其中汉明损失和排名损失分别为 0.148 2 和 0.261 6,精确度、召回率和 F1 分数分别为 82.04%、81.0%和 78.07%.文中提出的 MLSMOTE多标签分类框架可充分利用 EMRs数据,有效提高康复治疗处方的决策准确性.

Electronic medical records(EMRs)are compilation of data concerning a patient's medical history and health status.The utilization of EMRs is imperative in the diagnosis of patients with spinal cord injuries(SCI),thus necessitating the development of an EHR-based rehabilitation prescription model for SCI patients.First,a dataset of EMRs containing 1443 paraplegic SCI patients was constructed,and data preprocessing was completed accordingly.Second,to address the problem of imbalanced EMRs,a multi-label classification based on MLSMOTE(Multi-label Synthetic Minority Over-sampling Technique)was proposed framework.Finally,seven multilabel classification models are used to predict patients'Phys-ical Therapy(PT)prescriptions.The proposed MLSMOTE multi-label classification framework has been shown to adequately address the problem of category imbalance.The experimental results demonstrate that the RAkEL model exhibits significant improvement in numerous metrics when compared to the other six models.Specifically,the Hamming loss and ranking loss were found to be 0.1482 and 0.2616,respective-ly,while the precision,recall,and F1 score were determined to be 82.04%,81.0%,and 78.07%,respec-tively.The MLSMOTE multi-label classification framework proposed in this study has the capacity to fully utilize EMRs data and effectively enhance the precision of rehabilitation therapy prescriptions.

赵慧敏;郭欣;郄博韬;刘玉丽

河北工业大学 人工智能与数据科学学院,天津市北辰区西平道 5340 号 300401河北工业大学 人工智能与数据科学学院,天津市北辰区西平道 5340 号 300401河北工业大学 人工智能与数据科学学院,天津市北辰区西平道 5340 号 300401山东第一医科大学第三附属医院,山东省济南市无影山路 38 号 250031

计算机与自动化

电子病历MLSMOTE多标签分类脊髓损伤

electronic medical recordMLSMOTEmulti-label classificationspinal cord injury

《河北水利电力学院学报》 2025 (2)

22-27,6

国家重点研发计划(2019YFB1312500)

10.16046/j.cnki.issn2096-5680.2025.02.005

评论