| 注册
首页|期刊导航|航空兵器|远海多智能体空中对抗深度强化学习环境模型构建

远海多智能体空中对抗深度强化学习环境模型构建

张原 王江南 王伟 李璇

航空兵器2025,Vol.32Issue(3):48-56,9.
航空兵器2025,Vol.32Issue(3):48-56,9.DOI:10.12132/ISSN.1673-5048.2025.0020

远海多智能体空中对抗深度强化学习环境模型构建

Construction of a Parallel Training Environment Model for Multi-Agent Deep Reinforcement Learning in Far-Sea Aerial Confrontation

张原 1王江南 2王伟 2李璇1

作者信息

  • 1. 海军航空大学航空基础学院,山东烟台 264001
  • 2. 中国人民解放军91475部队,辽宁葫芦岛 125001
  • 折叠

摘要

Abstract

The quality of the environment model determines whether the deep reinforcement learning system can efficiently and accurately learn and train to make good decisions.Aiming at the problems of idealized air combat envi-ronment construction and task scenarios in the context of far-sea and remote combat,this paper constructs a parallel training environment for multi-agent deep reinforcement learning in far-sea air combat.Among them,based on JSBSim and scalable radar and weapon system models,an agent model is built that takes into account both actual combat and simulation performance.This study selects 18-dimensional state space and 7-dimensional action space,and constructs a multi-reward system with the main line and 10 sub-objectives.This approach solves the problems of algorithm difficul-ty in convergence caused by poor guidance of sparse rewards and high dimensional space.The compliance of the envi-ronment,the effectiveness of classic deep reinforcement learning algorithms and compatibility with mainstream training frameworks are verified through simulation.

关键词

远海远域/空中对抗/多智能体/深度强化学习/JSBSim/训练环境模型

Key words

far-sea region/aerial confrontation/multi-agent/deep reinforcement learning/JSBSim/training en-vironment model

分类

军事科技

引用本文复制引用

张原,王江南,王伟,李璇..远海多智能体空中对抗深度强化学习环境模型构建[J].航空兵器,2025,32(3):48-56,9.

基金项目

国家社会科学基金项目(2023-SKJJ-B-035) (2023-SKJJ-B-035)

航空兵器

OA北大核心

1673-5048

访问量3
|
下载量0
段落导航相关论文