| 注册
首页|期刊导航|光通信技术|机器学习辅助的多目标优化海底光缆路由规划研究

机器学习辅助的多目标优化海底光缆路由规划研究

赵赞善 高冠军 甘维明 王皓宇 段茂生 康达

光通信技术2025,Vol.49Issue(3):10-15,6.
光通信技术2025,Vol.49Issue(3):10-15,6.DOI:10.13921/j.cnki.issn1002-5561.2025.03.002

机器学习辅助的多目标优化海底光缆路由规划研究

Research on multi-objective optimization of submarine optical fiber route planning assisted by machine learning

赵赞善 1高冠军 2甘维明 3王皓宇 2段茂生 2康达4

作者信息

  • 1. 北京邮电大学电子工程学院,北京 100876||中国科学院声学研究所南海研究站,海口 570105||陵水海洋信息海南省野外科学观测研究站,海南陵水 572423
  • 2. 北京邮电大学电子工程学院,北京 100876
  • 3. 中国科学院声学研究所南海研究站,海口 570105||陵水海洋信息海南省野外科学观测研究站,海南陵水 572423
  • 4. 哈尔滨工程大学水声工程学院,哈尔滨 150000
  • 折叠

摘要

Abstract

To improve the global optimization capability of submarine cable routing planning algorithm,reduce cumulative costs and risks,and improve algorithm efficiency,a machine learning assisted(MLA)multi-objective optimization algorithm for sub-marine cable routing planning is proposed.Utilizing the advantages of reinforcement learning,MLA autonomously iterates learn-ing,synchronously optimizes costs and risks,considers parameters such as seabed topography and water depth,and adopts Pareto frontier as the convergence evaluation criterion.It is compared and verified with traditional ant colony optimization(ACO)algo-rithm.The experimental results show that under the same risk level,the algorithm can reduce the laying cost by 27.45%,and its optimal solution cumulative risk is only 25%of the ACO algorithm,and the convergence speed is improved by more than 330 times.In addition,most of its Pareto solutions are located at the forefront,which is significantly better than the discrete distribu-tion of the ACO algorithm solution set.

关键词

海底光缆路由规划/多目标优化/强化学习/Q学习/海缆系统经济性优化/海缆系统生存性优化

Key words

submarine optical fiber route planning/multi-objective optimization/reinforcement learning/Q-learning/economic optimization of submarine cable system/survivality optimization of submarine cable system

分类

电子信息工程

引用本文复制引用

赵赞善,高冠军,甘维明,王皓宇,段茂生,康达..机器学习辅助的多目标优化海底光缆路由规划研究[J].光通信技术,2025,49(3):10-15,6.

基金项目

国家重点研发计划项目(2022YFB2903303)资助 (2022YFB2903303)

国家自然科学基金项目(62371064)资助. (62371064)

光通信技术

OA北大核心

1002-5561

访问量0
|
下载量0
段落导航相关论文