| 注册
首页|期刊导航|光通信技术|基于FCNN的极化码分区译码算法研究

基于FCNN的极化码分区译码算法研究

罗颖 李晓记 王家明

光通信技术2025,Vol.49Issue(3):79-82,4.
光通信技术2025,Vol.49Issue(3):79-82,4.DOI:10.13921/j.cnki.issn1002-5561.2025.03.013

基于FCNN的极化码分区译码算法研究

Research on polar code partition decoding algorithm based on FCNN

罗颖 1李晓记 1王家明1

作者信息

  • 1. 桂林电子科技大学认知无线电与信息处理教育部重点实验室,广西桂林 541004
  • 折叠

摘要

Abstract

To reduce the dimensionality constraints of neural network decoders for polar codes during the training phase,a parti-tioned successive cancellation(SC)decoder based on fully connected neural networks(FCNN)is designed.By dividing the polar code decoding tree into two regions and processing each with differently parameterized FCNNs,the need for large-scale training data is reduced.The simulation results show that in an additive white Gaussian noise(AWGN)channel,when the signal-to-noise ratio(SNR)is between 1 to 5 dB,the performance of the FCNN-SC decoder approaches that of the SC decoding algorithm.When the SNR is between 1.5 to 3 dB,the FCNN-SC decoder achieves approximately 0.5 dB coding gain compared to the FCNN de-coder,and requires a smaller dataset during the training phase,being roughly half the size needed for the FCNN decoder.

关键词

极化码/串行抵消译码算法/全连接神经网络/神经网络译码器/深度学习

Key words

polar code/successive cancellation decoding algorithm/fully connected neural network/neural network decoder/deep learning

分类

信息技术与安全科学

引用本文复制引用

罗颖,李晓记,王家明..基于FCNN的极化码分区译码算法研究[J].光通信技术,2025,49(3):79-82,4.

基金项目

广西教育厅教改重点项目(2024JGZ127)资助 (2024JGZ127)

广西青年科学基金项目(2024GXNSFBA010144)资助. (2024GXNSFBA010144)

光通信技术

OA北大核心

1002-5561

访问量0
|
下载量0
段落导航相关论文