| 注册
首页|期刊导航|机械科学与技术|MSOA算法改进EKF的锂电池SOC估计方法

MSOA算法改进EKF的锂电池SOC估计方法

刘晟 王建锋 刘水宙 潘清云

机械科学与技术2025,Vol.44Issue(5):868-877,10.
机械科学与技术2025,Vol.44Issue(5):868-877,10.DOI:10.13433/j.cnki.1003-8728.20240045

MSOA算法改进EKF的锂电池SOC估计方法

SOC Estimation of Lithium Battery Using MSOA-optimized EKF Algorithm

刘晟 1王建锋 1刘水宙 1潘清云1

作者信息

  • 1. 长安大学汽车学院,西安 710064
  • 折叠

摘要

Abstract

The purpose of this paper is to improve the monitoring accuracy of state of charge(SOC)for batteries.Based on the equivalent circuit model of lithiumion batteries,the Elephant herding optimization(EHO)is employed to enhance the identification of model parameters through Kalman filtering(KF).The seagull optimization algorithm(SOA)is utilized to reduce the impact of initial noise values on the extended Kalman filter(EKF)algorithm,while employing an out-of-range processing strategy to avoid the reduction of population diversity.The modified seagull optimization algorithm(MSOA)is applied to optimize the EKF and improve the SOC estimation method for vehicle batteries,which is validated using DST and FDUS dynamic operating current data.The results demonstrate that the improved SOC estimation algorithm yields an error rate lower than 0.97%.Furthermore,the estimated error rates of root mean squared error(RMSE)and mean absolute error(MAE)are both lower than those of the EKF algorithms,indicating that the MSOA-optimized EKF algorithm offers superior estimation accuracy and stability.

关键词

锂电池/参数辨识/智能优化算法/荷电状态/扩展卡尔曼滤波

Key words

lithium battery/parameter identification/intelligent optimization algorithm/SOC/extended Kalman filter

分类

动力与电气工程

引用本文复制引用

刘晟,王建锋,刘水宙,潘清云..MSOA算法改进EKF的锂电池SOC估计方法[J].机械科学与技术,2025,44(5):868-877,10.

基金项目

中央高校基金项目(300102223203)、陕西省重点研发计划(2021LLRH-04-02-02,2022ZDLGY-03-09)及陕西省厅市联动重点项目(2022GD-TSLD-22) (300102223203)

机械科学与技术

OA北大核心

1003-8728

访问量2
|
下载量0
段落导航相关论文