| 注册
首页|期刊导航|空气动力学学报|大型结构风效应流固耦合机器学习研究进展

大型结构风效应流固耦合机器学习研究进展

张泽宇 李惠 周旭曦 许楠 王浩炜 杨子鉴 庄简 黎善武 赖马树金 陈文礼

空气动力学学报2025,Vol.43Issue(5):53-77,25.
空气动力学学报2025,Vol.43Issue(5):53-77,25.DOI:10.7638/kqdlxxb-2025.0061

大型结构风效应流固耦合机器学习研究进展

Advances in machine learning for wind-induced fluid-structure interaction of large-scale structures

张泽宇 1李惠 2周旭曦 1许楠 1王浩炜 1杨子鉴 1庄简 1黎善武 2赖马树金 2陈文礼2

作者信息

  • 1. 哈尔滨工业大学土木工程学院,哈尔滨 150090
  • 2. 哈尔滨工业大学土木工程学院,哈尔滨 150090||哈尔滨工业大学结构工程灾变与控制教育部重点实验室,哈尔滨 150090||哈尔滨工业大学土木工程智能防灾减灾工业与信息化部重点实验室,哈尔滨 150090
  • 折叠

摘要

Abstract

With the rapid development of computational technology and data science,machine learning provides a novel research paradigm for addressing complex fluid-structure interaction problems in large-scale structural wind effects.This paper systematically reviews recent advances in machine learning applications for wind effects on large-scale structures,focusing on four key aspects:structural surface wind pressure prediction,wind-induced response analysis and modeling,intelligent identification of aerodynamic equations,and reinforcement learning-based structural vibration control.For structural surface wind pressure prediction,machine learning effectively captures complex nonlinear wind pressure characteristics on structural surfaces.In the analysis and modeling of structural wind-induced responses,machine learning techniques enables accurate identification and modeling of abnormal large-amplitude vibrations of large-scale structures.Regarding intelligent identification of aerodynamic equations,data-driven machine learning significantly enhances the automation and accuracy of nonlinear equation identification.For structural vibration control,reinforcement learning offers optimized real-time active control strategies.However,challenges persist in data fusion,model generalization,and physical interpretability.Future studies should integrate physical mechanisms with data-driven models to develop machine learning approaches characterized by high generalization,robustness,and physical interpretability,thus further advancing the intelligent development of structural wind engineering.

关键词

机器学习/风工程/大型结构/风效应/流固耦合/振动控制

Key words

machine learning/wind engineering/large-scale structure/wind effect/fluid-structure interaction/vibration control

分类

航空航天

引用本文复制引用

张泽宇,李惠,周旭曦,许楠,王浩炜,杨子鉴,庄简,黎善武,赖马树金,陈文礼..大型结构风效应流固耦合机器学习研究进展[J].空气动力学学报,2025,43(5):53-77,25.

基金项目

国家重点研发计划项目(2022YFC3005303) (2022YFC3005303)

空气动力学学报

OA北大核心

0258-1825

访问量0
|
下载量0
段落导航相关论文