| 注册
首页|期刊导航|空气动力学学报|基于机器学习的极端风场短时预测研究进展与思考

基于机器学习的极端风场短时预测研究进展与思考

陶天友 邓鹏 王浩 范延盛

空气动力学学报2025,Vol.43Issue(5):78-91,14.
空气动力学学报2025,Vol.43Issue(5):78-91,14.DOI:10.7638/kqdlxxb-2025.0041

基于机器学习的极端风场短时预测研究进展与思考

Research progress and considerations on short-term prediction of extreme wind fields based on machine learning

陶天友 1邓鹏 2王浩 1范延盛2

作者信息

  • 1. 东南大学混凝土及预应力混凝土结构教育部重点实验室,南京 211189||东南大学土木工程学院,南京 211189
  • 2. 东南大学土木工程学院,南京 211189
  • 折叠

摘要

Abstract

In recent years,short-term extreme wind fields prediction has become a research hotspot and academic frontier in the area of international wind engineering due to its vital role in structural safety.Accurate prediction of in-situ wind speed before the arrival of extreme wind fields is of great significance for the early warning of engineering structures safety and emergency protection.The traditional numerical weather prediction method is effective for extreme wind field prediction.However,due to insufficient spatial resolution and high consumption of computing resources,it is difficult to provide a real-time prediction of in-situ wind speed for engineering structures.With the rapid development of artificial intelligence technology,machine learning offers new ideas for solving the problems mentioned above.It is increasingly widely applied in short-term extreme wind fields prediction,showing broad application prospects.In this regard,this paper provides a comprehensive review of recent progress in the short-term extreme wind fields prediction using machine learning-based approaches.Firstly,the application principles and characteristics of time series models,machine learning models,and hybrid models in wind field prediction are reviewed.Subsequently,we classify and evaluate prevalent methods for short-term extreme wind field prediction,focusing on three predominant wind types:regular strong winds,typhoons,and thunderstorm winds.Their advantages and limitations are summarized.Finally,considering current research gaps and challenges in short-term prediction of extreme wind fields,potential future directions are proposed.

关键词

极端风场/短时预测/机器学习/工程安全/数值天气预报

Key words

extreme wind field/short-term prediction/machine learning/engineering safety/numerical weather prediction

分类

大气科学

引用本文复制引用

陶天友,邓鹏,王浩,范延盛..基于机器学习的极端风场短时预测研究进展与思考[J].空气动力学学报,2025,43(5):78-91,14.

基金项目

国家自然科学基金(52278486,52338011) (52278486,52338011)

江苏省自然科学基金(BK20240177) (BK20240177)

中央高校基本科研业务费资助项目(2242024RCB0007) (2242024RCB0007)

空气动力学学报

OA北大核心

0258-1825

访问量0
|
下载量0
段落导航相关论文