| 注册
首页|期刊导航|空气动力学学报|定常来流下钝体二维组合断面气动特性与流场的智能预测方法

定常来流下钝体二维组合断面气动特性与流场的智能预测方法

李珂 王路路 陈增顺 赵文卓 秦煜 李少鹏

空气动力学学报2025,Vol.43Issue(5):112-123,12.
空气动力学学报2025,Vol.43Issue(5):112-123,12.DOI:10.7638/kqdlxxb-2025.0036

定常来流下钝体二维组合断面气动特性与流场的智能预测方法

Intelligent prediction method of flow field and aerodynamic characteristics for two-dimensional blunt body combined sections in steady wind

李珂 1王路路 1陈增顺 1赵文卓 1秦煜 1李少鹏1

作者信息

  • 1. 重庆大学土木工程学院,重庆 400045
  • 折叠

摘要

Abstract

In the design and optimization of structural cross-sections,the efficient and accurate evaluation of aerodynamic performance is of significant importance.To address the inefficiency in iterative computations involving diverse design parameters,this study proposed an intelligent prediction method based on a deep learning surrogate model,focusing on the rapid and accurate prediction of flow fields around two-dimensional combined bluff body cross-sections and static force coefficients under steady wind conditions.Specifically,this method employed a unified image-like shape representation to characterize the aerodynamic shapes of bluff body combined cross-sections,ensuring broad applicability without being limited by specific cross-section configurations.By integrating convolutional attention mechanisms and residual modules to construct the neural network architecture and using mean squared error to capture prediction errors,the method achieved a highly nonlinear mapping from aerodynamic shapes to flow characteristics and static force coefficients.The model achieves prediction errors within 3.7%for velocity fields,0.35%for surface pressure,and 6.25%for force coefficients under steady wind,meeting all accuracy requirements.Additionally,the computational efficiency was improved by four orders of magnitude compared to conventional CFD.This method provides an efficient and practical solution for the rapid prediction of aerodynamic performance for bluff body cross-sections under steady wind environments.

关键词

气动性能预测/气动外形/静力三分力系数/表面压力分布/深度学习

Key words

aerodynamic performance prediction/aerodynamic shape/static force coefficients/surface pressure distribution/deep learning

分类

土木建筑

引用本文复制引用

李珂,王路路,陈增顺,赵文卓,秦煜,李少鹏..定常来流下钝体二维组合断面气动特性与流场的智能预测方法[J].空气动力学学报,2025,43(5):112-123,12.

基金项目

重庆市杰出青年基金(2022NSCQ-JQX2377) (2022NSCQ-JQX2377)

空气动力学学报

OA北大核心

0258-1825

访问量4
|
下载量0
段落导航相关论文