| 注册
首页|期刊导航|空气动力学学报|1∶5矩形断面速度场降阶动力学模态智能预测模型

1∶5矩形断面速度场降阶动力学模态智能预测模型

赵林 刘鹏 崔巍

空气动力学学报2025,Vol.43Issue(5):124-133,10.
空气动力学学报2025,Vol.43Issue(5):124-133,10.DOI:10.7638/kqdlxxb-2025.0031

1∶5矩形断面速度场降阶动力学模态智能预测模型

Intelligent prediction model for reduced-order dynamic modes of velocity field around a 1∶5 rectangular section

赵林 1刘鹏 2崔巍2

作者信息

  • 1. 广西大学土木建筑工程学院,南宁 530004||同济大学土木工程防灾减灾全国重点实验室,上海 200092
  • 2. 同济大学土木工程防灾减灾全国重点实验室,上海 200092
  • 折叠

摘要

Abstract

Although the research on flow around bluff body sections can obtain the characteristics of the velocity field through particle image velocimetry(PIV)and computational fluid dynamics(CFD)methods,it is limited by the Reynolds number effect,onsite test conditions,and the accuracy of numerical simulation.However,the full-scale bridge surface pressure measurement technology is more engineering practical.Building upon the inherent coupling between the surface pressure field and velocity field of bridge sections,this paper proposes a reduced-order correlation and prediction model for the velocity field of a 1:5 rectangular section using surface pressure distribution.The developed model integrates dynamic mode decomposition(DMD)and a BP neural network to:(1)extract pressure and velocity field modes across Reynolds numbers(1000-20000);(2)establish their mapping relationship through an implicit neural network;and(3)achieve velocity field prediction from pressure data.Validation results at Re=6000 show prediction errors of merely 0.06 m/s(lateral)and 0.02 m/s(vertical)at the reference point[1.5,0],demonstrating the model's effectiveness.This research provides valuable insights for wake flow field reconstruction and aerodynamic measure evaluation in bridge sections.

关键词

1∶5矩形断面/动力学模态分解/表面压力分布/速度场反演/BP神经网络/桥梁

Key words

1∶5 rectangular cylinder/dynamic mode decomposition/surface pressure distribution/velocity field inversion/backpropagation neural network/bridge

分类

航空航天

引用本文复制引用

赵林,刘鹏,崔巍..1∶5矩形断面速度场降阶动力学模态智能预测模型[J].空气动力学学报,2025,43(5):124-133,10.

基金项目

国家重点研发计划(2022YFC3005301) (2022YFC3005301)

国家自然科学基金(52378527,52478552) (52378527,52478552)

空气动力学学报

OA北大核心

0258-1825

访问量0
|
下载量0
段落导航相关论文