| 注册
首页|期刊导航|空间电子技术|基于天球网格的大规模LEO星座Q-Learning QoS路由算法

基于天球网格的大规模LEO星座Q-Learning QoS路由算法

马伟 肖嵩 周诠 蔡宇茜

空间电子技术2025,Vol.22Issue(z1):132-139,8.
空间电子技术2025,Vol.22Issue(z1):132-139,8.DOI:10.3969/j.issn.1674-7135.2025.S1.011

基于天球网格的大规模LEO星座Q-Learning QoS路由算法

Large scale LEO constellation Q-Learning QoS routing algorithm based on celestial grid

马伟 1肖嵩 2周诠 3蔡宇茜3

作者信息

  • 1. 西安电子科技大学,西安 710071||中国空间技术研究院西安分院,西安 710100
  • 2. 北京电子科技学院,北京 100083||西安电子科技大学,西安 710071
  • 3. 中国空间技术研究院西安分院,西安 710100
  • 折叠

摘要

Abstract

Intelligent QoS routing is a research hotspot and challenge for large-scale LEO constellations.This article focuses on issues such as virtual real topology drift,multi service QoS conflicts,and dynamic load imbalance in LEO constellations,and proposes a Q-Learning QoS routing algorithm based on celestial grids.By integrating non-uniform discretization of the celestial sphere with Beidou grid coding,the problems of frequent link switching and virtual real topology synchronization can be solved.Based on this,a Q-Learning routing algorithm was designed by combining business heat maps,with bandwidth,load,heat level,and hop count as joint optimization objectives.A differentiated QoS reward mechanism was constructed to dynamically avoid congested links through real-time learning.The simulation results show that compared with HLLMR and Dijkstra's algorithm,this algorithm reduces packet loss rate by 4%and 11%respectively,increases throughput by 7%and 15%,and achieves comparable latency to HLLMR.It realizes the collaborative optimization of large-scale LEO constellation QoS guarantee and dynamic load balancing.

关键词

天球网格/热力图/Q-Learning/QoS路由

Key words

celestial grid/heatmap/Q-Learning/QoS routing

分类

信息技术与安全科学

引用本文复制引用

马伟,肖嵩,周诠,蔡宇茜..基于天球网格的大规模LEO星座Q-Learning QoS路由算法[J].空间电子技术,2025,22(z1):132-139,8.

基金项目

国家重点研发计划项目(编号:2019YFB1803100) (编号:2019YFB1803100)

空间电子技术

1674-7135

访问量0
|
下载量0
段落导航相关论文