| 注册
首页|期刊导航|机电工程技术|基于智能算法的一体式大型薄壁前机舱压铸成型工艺优化

基于智能算法的一体式大型薄壁前机舱压铸成型工艺优化

孟宪明 曹兴枫 任鹏飞 张赛 赵庆

机电工程技术2025,Vol.54Issue(10):1-7,7.
机电工程技术2025,Vol.54Issue(10):1-7,7.DOI:10.3969/j.issn.1009-9492.2025.10.001

基于智能算法的一体式大型薄壁前机舱压铸成型工艺优化

Optimization of Die Casting Process for Integrated Large Thin-walled Front Cabin Based on Intelligent Algorithm

孟宪明 1曹兴枫 1任鹏飞 1张赛 1赵庆2

作者信息

  • 1. 中国汽车技术研究中心有限公司,天津 300300
  • 2. 天津大学机械工程学院,天津 300354
  • 折叠

摘要

Abstract

To address the challenges associated with shrinkage porosity,gas entrapment,and insufficient filling commonly encountered in the die-casting process of large-scale integrated thin-walled components,an intelligent algorithm-driven approach for process parameter optimization is proposed to enhance the casting quality and forming stability of critical structural parts in new energy vehicles.Taking an integrated front cabin as the research object,four key process parameters of high-speed velocity,low-speed velocity,switching position,and casting temperature,are selected to construct a multi-objective optimization framework based on the Kriging surrogate model and the Non-dominated Sorting Genetic Algorithm Ⅱ(NSGA-Ⅱ).On the basis of orthogonal experimental design and functional zoning analysis,the component is divided into three distinct regions:the shock tower,the distal connection zone,and the key load-bearing area.A regionalized forming quality evaluation system is established by assigning differentiated weights to performance indicators in accordance with the functional requirements of each zone,thereby achieving coordinated optimization across multiple objectives.High-fidelity response surfaces are obtained via Kriging interpolation,enabling accurate prediction of forming responses.Through iterative solution of the Pareto front using NSGA-Ⅱ,optimal combinations of process parameters are identified.Simulation results indicate that the comprehensive forming quality scores in the three regions increased by 53%,23%,and 47%,respectively,with marked improvements in filling temperature uniformity,gas content,and entrapped air pressure.The findings substantiate the effectiveness and applicability of intelligent optimization algorithms in addressing the complexity of thin-walled die-casting processes and provide theoretical and methodological support for the process design and quality enhancement of integrated die-cast structures in the automotive industry.

关键词

一体化压铸/多目标优化/工艺参数智能优化/克里金代理模型/NSGA-Ⅱ

Key words

integrated die-casting/multi-objective optimization/intelligent process parameter optimization/Kriging surrogate model/NSGA-Ⅱ

分类

金属材料

引用本文复制引用

孟宪明,曹兴枫,任鹏飞,张赛,赵庆..基于智能算法的一体式大型薄壁前机舱压铸成型工艺优化[J].机电工程技术,2025,54(10):1-7,7.

基金项目

天津市科技计划项目(24ZXZSSS00580) (24ZXZSSS00580)

中国汽车工程学会青年人才托举工程项目(QK-20240316-011) (QK-20240316-011)

中国汽车技术研究中心有限公司科研项目(ZX23240003) (ZX23240003)

机电工程技术

1009-9492

访问量0
|
下载量0
段落导航相关论文