| 注册
首页|期刊导航|机电工程技术|基于改进粒子群优化算法的柔性车间作业调度研究

基于改进粒子群优化算法的柔性车间作业调度研究

屈新怀 万之栩 丁必荣 孟冠军

机电工程技术2025,Vol.54Issue(10):17-21,99,6.
机电工程技术2025,Vol.54Issue(10):17-21,99,6.DOI:10.3969/j.issn.1009-9492.2025.10.004

基于改进粒子群优化算法的柔性车间作业调度研究

Research on FJSP Problem Based on Improved PSO

屈新怀 1万之栩 1丁必荣 1孟冠军1

作者信息

  • 1. 合肥工业大学机械工程学院,合肥 230009
  • 折叠

摘要

Abstract

An enhanced Particle Swarm Optimization(PSO)algorithm is presented aiming at the Flexible Job Shop Scheduling Problem(FJSP),with the primary objective of minimizing the maximum completion time.To overcome challenges such as slow convergence and susceptibility to local optima,an adaptive inertia weight mechanism and a crossover search process are introduced.These additions increase the diversity of solutions and the algorithm's ability to explore the global solution space.The improved PSO outperforms both the standard PSO and the Adaptive Genetic Algorithm(AGA)across various test cases,particularly excelling in small-scale scenarios.Experiments confirm its superior performance in reducing maximum completion times and improving convergence speed and optimization capabilities.The research underscores the improved PSO's potential as an effective and reliable solution for FJSP,offering substantial benefits for the efficiency and quality of scheduling in intelligent manufacturing.

关键词

车间作业调度/柔性车间/粒子群优化算法/自适应惯性权重/交叉搜索

Key words

job-shop scheduling/flexible workshop/particle swarm optimization algorithm/adaptive inertia weighting/cross search

分类

计算机与自动化

引用本文复制引用

屈新怀,万之栩,丁必荣,孟冠军..基于改进粒子群优化算法的柔性车间作业调度研究[J].机电工程技术,2025,54(10):17-21,99,6.

基金项目

国家重点研发计划资助项目(2019YFB1705303) (2019YFB1705303)

机电工程技术

1009-9492

访问量0
|
下载量0
段落导航相关论文