| 注册
首页|期刊导航|人工晶体学报|机器学习在分子束外延生长的应用进展

机器学习在分子束外延生长的应用进展

杨再洪 周灿 范柳燕 张燕辉 陈泽中 陈平平

人工晶体学报2025,Vol.54Issue(6):924-934,11.
人工晶体学报2025,Vol.54Issue(6):924-934,11.DOI:10.16553/j.cnki.issn1000-985x.2024.0272

机器学习在分子束外延生长的应用进展

Research Progress on Application of Machine Learning in Molecular Beam Epitaxy Growth

杨再洪 1周灿 2范柳燕 2张燕辉 2陈泽中 3陈平平2

作者信息

  • 1. 上海理工大学材料与化学学院,上海 200093||中国科学院上海技术物理研究所红外科学与技术全国重点实验室,上海 200083
  • 2. 中国科学院上海技术物理研究所红外科学与技术全国重点实验室,上海 200083
  • 3. 上海理工大学材料与化学学院,上海 200093
  • 折叠

摘要

Abstract

In recent years,artificial intelligence has been widely applied in the field of materials,and the application of machine learning in molecular beam epitaxy(MBE)has attracted attention.Intelligent recognition and feedback based on in-situ reflection high-energy electron diffraction(RHEED)and related material properties in MBE technology can significantly improve the quality and efficiency of material growth,leading to the realization of intelligent epitaxy of epitaxial films.This article focuses on the application of machine learning in MBE.It first introduces commonly used machine learning algorithm models in MBE,and explains the application of machine learning in optimizing growth conditions and specifically summarizes the research progress on machine learning based on RHEED images for different material systems(semiconductor thin films and quantum structure materials,oxide materials,and two-dimensional materials).A summary and outlook were provided on the existing problems and future development strategies.

关键词

分子束外延/机器学习/反射高能电子衍射/Ⅲ-Ⅴ族半导体材料/人工智能

Key words

molecular beam epitaxy/machine learning/reflection high-energy electron diffraction/Ⅲ-Ⅴ semiconductor material/artificial intelligence

分类

物理学

引用本文复制引用

杨再洪,周灿,范柳燕,张燕辉,陈泽中,陈平平..机器学习在分子束外延生长的应用进展[J].人工晶体学报,2025,54(6):924-934,11.

基金项目

国家自然科学基金(12027805,11991060) (12027805,11991060)

中国科学院专项(GJ0090406) (GJ0090406)

人工晶体学报

OA北大核心

1000-985X

访问量0
|
下载量0
段落导航相关论文