| 注册
首页|期刊导航|标准科学|消费品投诉识别与缺陷特征发现

消费品投诉识别与缺陷特征发现

田晶晶 洪瑶瑶 韦海霞 刘成伟 林春伟

标准科学Issue(6):116-125,10.
标准科学Issue(6):116-125,10.DOI:10.3969/j.issn.1674-5698.2025.06.016

消费品投诉识别与缺陷特征发现

Consumer Product Complaint Identification and Defect Feature Discovery

田晶晶 1洪瑶瑶 2韦海霞 3刘成伟 3林春伟3

作者信息

  • 1. 国家市场监督管理总局缺陷产品召回技术中心
  • 2. 中国科学技术大学管理学院
  • 3. 一汽大众汽车有限公司
  • 折叠

摘要

Abstract

[Objective]This study aims to provide a basis for improving the quality and service of consumer goods,enhancing consumer satisfaction and brand competitiveness,and promoting the orderly and healthy development of the consumer goods market.[Methods]Utilizing 23,736 consumer complaint texts obtained from government official platforms between 2016 and 2021,this study applies the BERTopic model for topic mining to identify key themes and their evolutionary trends.Furthermore,a network analysis of complaint topics is conducted to examine the associations between defect characteristics.[Results]The analysis reveals that consumer complaints predominantly focus on quality defects in electronic products and inadequate after-sales service.Consumers exhibit a high level of concern regarding automatic shutdown issues caused by mobile phone battery problems.The complaint topic network uncovers complex relationships within complaint content,highlighting that issues related to repair and after-sales service serve as bridging nodes in the network.Additionally,consumers demonstrate a strong emphasis on brands,with notable differences in complaint patterns across brands and product categories.[Conclusion]The constructed topic model effectively identifies complaint categories,brands,and defect characteristics while elucidating the intricate relationships among different complaint contents.Future research will expand the sample scope and incorporate complaint texts from broader sources to enhance information mining.

关键词

消费品缺陷/BERTopic模型/文本挖掘/投诉主题网络

Key words

consumer product defects/BERTopic model/text mining/complaint topic network

引用本文复制引用

田晶晶,洪瑶瑶,韦海霞,刘成伟,林春伟..消费品投诉识别与缺陷特征发现[J].标准科学,2025,(6):116-125,10.

基金项目

本文受国家发展和改革委员会社会治理和智慧社会科技支撑重点项目"消费者投诉举报信息智能挖掘关键技术研究及应用示范"(项目编号:2024YFC3307800) (项目编号:2024YFC3307800)

国家市场监督管理总局科技计划项目"缺陷汽车产品召回过程追溯关键技术研究及应用"(项目编号:2024MK188)资助. (项目编号:2024MK188)

标准科学

1674-5698

访问量1
|
下载量0
段落导航相关论文