| 注册
首页|期刊导航|软件导刊|基于多尺度特征融合轻量化网络的遥感影像场景分类

基于多尺度特征融合轻量化网络的遥感影像场景分类

赵云飞 李文 马颂尧

软件导刊2025,Vol.24Issue(6):199-204,6.
软件导刊2025,Vol.24Issue(6):199-204,6.DOI:10.11907/rjdk.241415

基于多尺度特征融合轻量化网络的遥感影像场景分类

Remote Sensing Image Scene Classification Using a Lightweight Network with Multi-scale Feature Fusion

赵云飞 1李文 2马颂尧2

作者信息

  • 1. 昆明理工大学 国土资源工程学院,云南 昆明 650093
  • 2. 中国人民武装警察部队士官学校,浙江 杭州 311403
  • 折叠

摘要

Abstract

A multi-scale feature fusion lightweight network MSA ResNet is proposed to address the increasing complexity and redundant fea-ture extraction of existing remote sensing image scene classification models.Firstly,by combining the classic ResNet model with Swin Trans-former technology,the sliding window multi head self attention mechanism,multi-level feature stacking,and cross layer connection strategy are utilized to enhance the model's understanding of spatial relationships and its ability to fuse multi-scale features;Secondly,simplifying the convolution module within the residual blocks of the network and introducing label smoothing strategies significantly reduce the number of mod-el parameters,maintain feature extraction efficiency,and improve overall classification performance.Experiments on the AID dataset show that the overall classification accuracy of the proposed model is 92.97%,which is 7.39%,1.14%,0.82%,and 0.65%higher than networks such as MSCP,SAFF,APDC,and PSGAN,respectively.This confirms that the multi-scale fusion method can improve the model's feature extraction ability,feature performance,and classification accuracy when the backbone feature extraction network has limited capabilities.

关键词

遥感影像/场景分类/多头自注意力/多尺度特征融合

Key words

remote sensing imagery/scene classification/multi-head self-attention/multi-scale feature fusion

分类

计算机与自动化

引用本文复制引用

赵云飞,李文,马颂尧..基于多尺度特征融合轻量化网络的遥感影像场景分类[J].软件导刊,2025,24(6):199-204,6.

软件导刊

1672-7800

访问量0
|
下载量0
段落导航相关论文