| 注册
首页|期刊导航|西华大学学报(自然科学版)|基于多智能体强化学习的交叉道路车辆协同控制

基于多智能体强化学习的交叉道路车辆协同控制

申元霞 谢悦 张学锋 汤亚玲 储岳中

西华大学学报(自然科学版)2025,Vol.44Issue(4):40-48,9.
西华大学学报(自然科学版)2025,Vol.44Issue(4):40-48,9.DOI:10.12198/j.issn.1673-159X.5129

基于多智能体强化学习的交叉道路车辆协同控制

Cooperative Control of Cross-road Vehicles Using Multi-agent Reinforcement Learning

申元霞 1谢悦 1张学锋 1汤亚玲 1储岳中1

作者信息

  • 1. 安徽工业大学特种重载机器人安徽省重点实验室,安徽 马鞍山 243032
  • 折叠

摘要

Abstract

To enhance the fast response and safe passage ability of self-driving vehicles in urban con-gested intersections,we proposed a multi-agent reinforcement learning vehicle cooperative control strategy based on the MAPPO-RCNN algorithm.The MAPPO algorithm was used to achieve cooperative control between vehicles using raw,unprocessed RGB images collected by vehicle sensors as input.It outputs vehicle actions,which considering the influence of mutual positions of vehicles on the traffic flow of the passing task to optimize vehicle passing time and safety.We designed the generation algorithm for strategy and the optimization objective function.To prevent the strategy from falling into the local optimum,we used the Nash equilibrium to judge the strategy's convergence.We employed the CARLA simulation plat-form for experimental simulation.Experimental results demonstrate that the vehicle cooperative control strategy moderately enhances the traffic flow effect of self-driving vehicles at intersections and ensures the stability of the whole control system.

关键词

车辆协同控制/MAPPO-RCNN算法/端到端/多智能体系统/策略生成算法/交通流优化/CARLA仿真

Key words

cooperative vehicle control/MAPPO-RCNN algorithms/end-to-end/multi-intelligent body systems/policy generation algorithms/traffic flow optimization/CARLA simulation

分类

交通运输

引用本文复制引用

申元霞,谢悦,张学锋,汤亚玲,储岳中..基于多智能体强化学习的交叉道路车辆协同控制[J].西华大学学报(自然科学版),2025,44(4):40-48,9.

基金项目

安徽高校自然科学研究项目(2022AH050290) (2022AH050290)

特种重载机器人安徽省重点实验室项目(TZJQR007-2023). (TZJQR007-2023)

西华大学学报(自然科学版)

1673-159X

访问量0
|
下载量0
段落导航相关论文