| 注册
首页|期刊导航|西安工程大学学报|基于SAC-YOLO的轻量化织物疵点分割算法

基于SAC-YOLO的轻量化织物疵点分割算法

张周强 李成 王康旭 陈芙蓉 崔芳斌

西安工程大学学报2025,Vol.39Issue(3):59-69,11.
西安工程大学学报2025,Vol.39Issue(3):59-69,11.DOI:10.13338/j.issn.1674-649x.2025.03.008

基于SAC-YOLO的轻量化织物疵点分割算法

Lightweight fabric defect segmentation algorithm based on SAC-YOLO

张周强 1李成 1王康旭 1陈芙蓉 1崔芳斌1

作者信息

  • 1. 西安工程大学 机电工程学院,陕西 西安 710048
  • 折叠

摘要

Abstract

Aimed at the problems of low detection accuracy and complex model in the process of fabric defect detection,a lightweight fabric defect segmentation algorithm based on SAC-YOLO was proposed.Firstly,a lightweight down-sampling module,ADown,with stronger extraction ca-pabilities,was introduced in the Backbone part to improve accuracy while reducing model parame-ters.SENetv2 attention mechanism was then incorporated into the C2f module to enhance the model's ability to extract semantic and detailed information of small defect targets.Secondly,the Neck layer uses a multi-scale feature fusion module,significantly reducing the model parameters and computational load.Finally,the Inner-CIoU loss function was introduced to replace the origi-nal CIoU bounding box regression loss function,accelerating the model convergence speed and im-proving the model generalization ability.Experimental results show that compared to the im-proved YOLOv8s,the proposed model reduces the parameter count by 45.8% and the computa-tional load by 8.8 billion floating-point operations.The mAP50 and mAP50-95 of defect detection are improved by 0.5% and 1.7% ,respectively.The precision,recall,mAP50,and mAP50-95 of segmen-tation are improved by 1.3%,0.2%,0.4%,and 1.4%,respectively.Compared with other main-stream segmentation algorithms,the improved algorithm model shows superior performance in both detection and segmentation.

关键词

织物疵点检测/YOLOv8/图像分割/注意力机制

Key words

fabric defect detection/YOLOv8/image segmentation/attention mechanism

分类

轻工业

引用本文复制引用

张周强,李成,王康旭,陈芙蓉,崔芳斌..基于SAC-YOLO的轻量化织物疵点分割算法[J].西安工程大学学报,2025,39(3):59-69,11.

基金项目

功能性纺织材料及制品教育部重点实验室开放课题(2024FTMP016) (2024FTMP016)

陕西省自然科学基础研究计划项目(2023JCYB288) (2023JCYB288)

西安工程大学专业学位研究生教学案例项目(24yjxa109) (24yjxa109)

西安工程大学学报

1674-649X

访问量0
|
下载量0
段落导航相关论文