| 注册
首页|期刊导航|浙江电力|基于种子生长策略与深度神经网络的电力工作票智能识别方法

基于种子生长策略与深度神经网络的电力工作票智能识别方法

廖美英 周俊煌 张勇军

浙江电力2025,Vol.44Issue(6):91-99,9.
浙江电力2025,Vol.44Issue(6):91-99,9.DOI:10.19585/j.zjdl.202506009

基于种子生长策略与深度神经网络的电力工作票智能识别方法

An intelligent recognition method for electrical work permits based on seed growth strategy and deep neural networks

廖美英 1周俊煌 2张勇军3

作者信息

  • 1. 广东科学技术职业学院,广州 510600
  • 2. 广州市奔流电力科技有限公司,广州 510670
  • 3. 华南理工大学 电力学院,广州 510640
  • 折叠

摘要

Abstract

In response to the digitalization needs of electrical work permits,an intelligent recognition method based on the seed growth strategy and dense convolutional network(DenseNet)is proposed.Firstly,during text detection,the seed growth strategy is employed to select an initial seed point and gradually expand the candidate areas,effec-tively improving the localization accuracy for irregular text areas.Then,during text recognition,the method com-bines DenseNet's deep feature extraction capabilities with the CTC technique's mechanism for aligning variable-length sequences,enhancing the recognition performance of character sequences.Finally,experiments demonstrate that the proposed method achieves higher accuracy in recognizing industry-specific characters,such as equipment codes and electrical symbols,significantly reducing misrecognition rates and effectively meeting the digital process-ing needs of electrical work permits.The method shows strong practical value and promising application potential.

关键词

种子生长策略/深度神经网络/不定长文本识别/电力工作票

Key words

seed growth strategy/deep neural network/variable-length text recognition/electrical work permit

引用本文复制引用

廖美英,周俊煌,张勇军..基于种子生长策略与深度神经网络的电力工作票智能识别方法[J].浙江电力,2025,44(6):91-99,9.

基金项目

国家自然科学基金(62376100) (62376100)

浙江电力

1007-1881

访问量0
|
下载量0
段落导航相关论文